Utilize imagery and crowdsourced data on spatial employment modelling
Abstract
Background: Spatial employment modeling investigates employment distribution, patterns, influencing factors, neighboring area impact, and regional policy efficacy. Conventional studies often rely on traditional data sources, which may overlook critical employment-related phenomena. In 2022, Java recorded the lowest labor absorption rate in Indonesia, necessitating a new approach.
Aim: This study combines imagery, crowdsourced data, and official statistics to identify factors influencing labor absorption in Java Island.
Method: Geographically Weighted Regression (GWR) was employed to account for spatial effects in the data.
Results: The model reveals that nighttime light intensity in urban and agricultural areas, along with environmental quality, significantly enhances labor absorption across Java. Internet facilities, universities, and the number of micro and small industries also positively influence most districts/cities.
Conclusion: Incorporating new data sources offers valuable insights for understanding employment patterns and can enrich employment research frameworks.
Keywords
Full Text:
PDFReferences
Amalia, D., & Woyanti, N. (2020). The Effect of Business Unit, Production, Private Investment, and Minimum Wage on the Labor Absorption in the Large and Medium Industry 6 Provinces in Java Island. Media Ekonomi Dan Manajemen, 35(2), 206. https://doi.org/10.24856/mem.v35i2.1550
Anselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer Academic.
ASEAN. (2023). ASEAN STATISTICAL HIGHLIGHTS 2023.
Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing, 7(4), 4026–4047. https://doi.org/10.3390/rs70404026
Daniel, Á. S. (2021). The effects of technological change on labor markets: College wage premium in Europe.
Dewi, R. R. (2019). Pengaruh Jumlah Industi Kecil dan Menangah (IKM) dan PDRB Terhadap Penyerapan Tenaga Kerja di Sektor IKM Provinsi Jawa Timur Tahun 2015 - 2017. Universitas Islam Negeri Sunan Ampel Surabaya.
Favaretto, M., de Clercq, E., Schneble, C. O., & Elger, B. S. (2020). What is your definition of Big Data? Researchers’ understanding of the phenomenon of the decade. PLoS ONE, 15(2). https://doi.org/10.1371/journal.pone.0228987
Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically Weighted Regression: Analysis of Spatially Varying Relationship. Wiley.
Friedl, M., & Sulla-Menashe, D. (2022). MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V061 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center. Accessed 2023-12-15 from https://doi.org/10.5067/MODIS/MCD12Q1.061. https://doi.org/10.5067/MODIS/MCD12Q1.061
Hasiholan Siallagan, M. A., Nur Rahmah, A., Dwi Saputra, M., Sovi Hidayat, A., & Artamevia, A. (2023). Determinan Produktivitas Pangan dan Konsumsi Kalori di Indonesia Tahun 2020 (Determinants of Food Productivity and Caloric Consumption in Indonesia 2020). Seminar Nasional Official Statistics.
Hasna, Y. M. (2020). PENGARUH TINGKAT UPAH DAN TEKNOLOGI TERHADAP PENYERAPAN TENAGA KERJA PADA INDUSTRI KERAJINAN KULIT DI KABUPATEN MAGETAN. Global Health, 167(1).
Kim, Y. J., & Kim, E. J. (2020). Neighborhood greenery as a predictor of outdoor crimes between low and high-income neighborhoods. International Journal of Environmental Research and Public Health, 17(5). https://doi.org/10.3390/ijerph17051470
Kitchin, R. (2015). The opportunities, challenges and risks of big data for official statistics. In Statistical Journal of the IAOS (Vol. 31, Issue 3, pp. 471–481). IOS Press BV. https://doi.org/10.3233/SJI-150906
Kjellström, Tord., Maître, Nicolas., Saget, Catherine., Otto, Matthias., & Karimova, Takhmina. (2019). Working on a warmer planet : the effect of heat stress on productivity and decent work. International Labour Organization.
Kuncoro, H. (2002). UPAH SISTEM BAGI HASIL DAN PENYERAPAN TENAGA KERJA. Jurnal Ekonomi Pembangunan, 7(1).
Lu, B., Charlton, M., Harris, P., & Fotheringham, A. S. (2014). Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data. International Journal of Geographical Information Science, 28(4), 660–681. https://doi.org/10.1080/13658816.2013.865739
Mahardhika, C. (2018). Pengaruh Keberadaan Perguruan Tinggi Terhadap Pertumbuhan Ekonomi Dan Tingkat Pengangguran Di Indonesia. Ilmu Ekonomi Pembangunan, 1.
Mankiw, N. G. (2006). Principles of Economics (4th ed.). Cengage Learning.
Mohammadinia, A., Alimohammadi, A., & Saeidian, B. (2017). Efficiency of geographically weighted regression in modeling human leptospirosis based on environmental factors in Gilan province, Iran. Geosciences (Switzerland), 7(4). https://doi.org/10.3390/geosciences7040136
Nafarin, N. A., & Novitasari, N. (2023). Relationship between Normalized Difference Vegetation Index (NDVI) and Rice Growth Phases in Danda Jaya Swamp Irrigation Area Regency Barito Kuala. IOP Conference Series: Earth and Environmental Science, 1184(1). https://doi.org/10.1088/1755-1315/1184/1/012019
Payne Institute. (2021). VIIRS Nighttime Light. https://eogdata.mines.edu/products/vnl/#monthly
Putri, S. R., Wijayanto, A. W., & Sakti, A. D. (2022). Developing Relative Spatial Poverty Index Using Integrated Remote Sensing and Geospatial Big Data Approach: A Case Study of East Java, Indonesia. ISPRS International Journal of Geo-Information, 11(5). https://doi.org/10.3390/ijgi11050275
Rahmah, D. L., Juhriah, E., & Nazelliana, D. (2018). Analisa Perbandingan Kinerja Akses Internet Untuk Kartu Prabayar Operator Gsm Simpati, Indosat Dan Xl. 87–98.
Ramantyo, B., & Suryo Bintoro, N. (2021). Analisis Peran Industri Kecil dan Menengah Terhadap Pengentasan Pengangguran Terbuka Di Kota Malang. Jurnal Ilmiah Mahasiswa FEB.
Rizki Oktarina, C., Aprianto, E., & Hidayati, N. (2023). Modeling the Open Unemployment Rate of Regency/City in West Java Province in 2021 using Spatial Autoregresive Moving Average and Spatial Durbin Model. Journal of Statistics and Data Science, 2(2). https://ejournal.unib.ac.id/index.php/jsds/index
Rybnikova, N. (2022). Nighttime Lights as a Proxy for Economic Performance of Regions. www.mdpi.com/journal/remotesensing
Siallagan, M. A. H., & Pusponegoro, N. H. (2024). SPATIAL REGRESSION APPROACH TO MODELLING POVERTY IN JAVA ISLAND 2022. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 18(3), 1765–1778. https://doi.org/10.30598/barekengvol18iss3pp1765-1778
Siallagan, M. A. H., & Wijayanto, A. W. (2023). Sentiment Analysis and Topic Modelling on Crowdsourced Data. Indonesian Journal of Artificial Intelligence and Data Mining, 7(1). https://doi.org/10.24014/ijaidm.v7i1.24777
gee-community. (2023). Speedtest® by Ookla® Global Fixed and Mobile Network Performance Maps. Based on analysis by Ookla of Speedtest Intelligence® data for [DATA TIME PERIOD]. Provided by Ookla and accessed [DAY MONTH YEAR]. Ookla trademarks used under license and reprinted with permission. https://gee-community-catalog.org/projects/speedtest/
SUHET. (2013). Sentinel-2 User Handbook.
Sukman, J. Y. (2017). Studi Keterserapan Alumni Dalam Dunia Kerja Pada Jurusan Pendidikan Fisika Fakultas Tarbiyah dan Keguruan Uin Alauddin Makassar Angkatan 2008 dan 2009. 4.
Todaro, M. P. (1998). Economic Development in The Third World.
Todaro, M. P. (2006). Economic Development (9th ed.).
Utomo, C. P. (2022). The Factors of Affecting Labor Absorption in Java Island. Efficient: Indonesian Journal of Development Economics, 5(1), 1444–1452. https://doi.org/10.15294/efficient.v5i1.49529
Wicaksono, D. S., Nuriyah, S., Fajritia, R., Yuniarti, N. P. N., Priatmadani, P., Amelia, L., & Berliana, S. M. (2024). Modeling Factors Affecting Educated Unemployment on Java Island Using Geographically Weighted Poisson Regression Model. Barekeng: Jurnal Ilmu Matematika Dan Terapan, 18(1), 0615–0626. https://doi.org/10.30598/barekengvol18iss1pp0615-0626
DOI: http://dx.doi.org/10.24042/ajpm.v15i2.24518
Refbacks
- There are currently no refbacks.
Indexed by:
Al-Jabar : Jurnal Pendidikan Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.