Ways of thinking senior high school student to solve geometri van hiele problem use reversible thinking ability

Aneu Pebrianti, Suhendra Suhendra

Abstract


Background: Reversible thinking is a cognitive strategy that involves tracing the path from an end result back to the starting point. It is particularly useful in problem-solving.

Aim: This study aims to describe the thought process of high school students in finding solutions to van hiele geometry problems using reversible thinking ability.

Method: A case study approach was employed. The participants were two high school students, and the research tools included written tests and interviews. These instruments were used to delve into the students' written responses.

Result: The findings revealed two key aspects: firstly, the students' van Hiele geometry thinking was predominantly at the deduction stage, evidenced by their ability to model geometric shapes based on their characteristics. Secondly, their reversible thinking in geometry was demonstrated through the simplification of fractional operations to obtain whole parts.

Conclusion: The study highlights the efficacy of reversible thinking in solving geometric problems and provides insights into the cognitive processes of high school students. The ability to reverse engineer solutions from a known outcome back to the starting conditions is a valuable skill in mathematical problem-solving.


Keywords


Reversible thinking; Van hiele geometry thinking; Ways of thinking

Full Text:

PDF

References


Acar, F., & Serçe, F. (2021). A comparative study of secondary mathematics curricula of Turkey, Estonia, Canada, and Singapore. Journal of Pedagogical Research, 5(1), 216–242. https://doi.org/10.33902/JPR.2021167798

Anđelković, S., & Malinović-Jovanović, N. (2022). Students ’ achievements in primary school mathematics according to the van hiele model of the development of geometric thinking sanja Anđelković , Nela Malinović - Jovanović. Teaching, Learning and Teacher Education, 6, 155–167.

Arnal-Bailera, A., & Manero, V. (2023). A characterization of van hiele’s level 5 of geometric reasoning using the delphi methodology. International Journal of Science and Mathematics Education, 0123456789. https://doi.org/10.1007/s10763-023-10380-z

Balingga, E., Prahmana, R. C. I., & Murniati, N. (2016). Analisis kemampuan reversibilitas siswa MTs Kelas VII dalam menyusun persamaan linier. Jurnal Review Pembelajaran Matematika, 1(2), 117–131. https://doi.org/10.15642/jrpm.2016.1.2.117-131

Bungin, B. (2003). Analisa data penelitian kualitatif. In Raja Grafindo Persada.

Cesaria, A., Herman, T., & Dahlan, J. A. (2021). Level berpikir geometri peserta didik berdasarkan teori van hiele pada materi bangun ruang sisi datar. Jurnal Elemen, 7(2), 267–279. https://doi.org/10.29408/jel.v7i2.2898

Dewanti, F., & Komala, E. (2023). Kemampuan pemahaman konsep matematika: Kajian analisis hambatan epistimologi siswa smp pada materi statistika. Wacana Akademika: Majalah Ilmiah Kependidikan Volume, 7, 138–147.

Febriana, R., Yusri, R., & Delyana, H. (2020). Modul geometri ruang berbasis problem based learning terhadap kreativitas pemecahan masalah. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 9(1), 93. https://doi.org/10.24127/ajpm.v9i1.2591

Flanders, S. T. (2014). Investigating flexibility , reversibility , and multiple representations in a calculus environment. (Thesis, Gannon University)

Hackenberg, A. J. (2005). Construction of algebraic reasoning and mathematical caring relations. University of Georgia.

Hackenberg, A. J. (2010). Students’ reasoning with reversible multiplicative relationships. Cognition and Instruction, 28(4), 383–432.

Han, G., Botao, Z., Hanbin, L., & Weiya, C. (2022). Computational geometric approach for BIM semantic enrichment to support automated underground garage compliance checking. Journal of Construction Engineering and Management, 148(1), 5021013. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002230

Kania, N., Sudianto, S., & Hanipah, H. (2022). Analysis of student’s geometry thinking ability based on van hiele’s theory. Journal of Mathematics and Mathematics Education, 12(1), 21–33. https://doi.org/10.20961/jmme.v12i1.62273

Khalishah, N., & Nalim, N. (2022). Studi etnomatematika konsep geometris dalam kearifan budaya lokal batik pekalongan. In SANTIKA: Seminar Nasional Tadris Matematika, 2, 390-400.

Langi’, E. L., Juniati, D., & Abadi. (2023). Students as prospective teachers’ understanding of integral based on the APOS theory in terms of gender difference. Journal of Higher Education Theory and Practice, 23(4), 169–185. https://doi.org/10.33423/jhetp.v23i4.5897

Maf’ulah, S., Fitriyani, H., Yudianto, E., Fiantika, F. R., & Hariastuti, R. M. (2019). Identifying the reversible thinking skill of students in solving function problems. In Journal of Physics: Conference Series, 1188(1), 012033. IOP Publishing. https://doi.org/10.1088/1742-6596/1188/1/012033

Maf’ulah, S., & Juniati, D. (2019). Students’ strategies to solve reversible problems of function: The part of reversible thinking. Journal of Physics: Conference Series, 1417(1). https://doi.org/10.1088/1742-6596/1417/1/012051

Maharani, A., Sulaiman, H., Saifurrohman, Aminah, N., & Rosita, C. D. (2019). Analyzing the student’s cognitive abilities through the thinking levels of geometry van hiele reviewed from gender perspective. Journal of Physics: Conference Series, 1188(1). https://doi.org/10.1088/1742-6596/1188/1/012066

Pebrianti, A., Juandi, D., & Nurlaelah, E. (2022). Reversible thinking ability in solving mathematics problems. Jurnal Cendekia : Jurnal Pendidikan Matematika, 7(1), 163–173. https://doi.org/10.31004/cendekia.v7i1.1905

Pérez-Fabello, M. J., & Campos, A. (2023). Influence of spatial imagery and imagery control on geometric form location in paintings. Thinking Skills and Creativity, 48, 101298. https://doi.org/10.1016/j.tsc.2023.101298

Ramadhania, D., Prayitno, S., Subarinah, S., & Arjudin, A. (2022). Analysis of mathematics problem-solving ability on plane figure subject based on van hieles theory at Junior High School. Jurnal Pijar Mipa, 17(4), 493–498. https://doi.org/10.29303/jpm.v17i4.3413

Ristanty, D. W., & Pratama, F. W. (2022). Analisis kemampuan pemecahan masalah matematika pada materi segiempat berdasarkan teori van hiele. Jurnal Cendekia : Jurnal Pendidikan Matematika, 6(2), 1648–1658. https://doi.org/10.31004/cendekia.v6i2.1400

Sangwin, C. J., & Jones, I. (2017). Asymmetry in student achievement on multiple-choice and constructed-response items in reversible mathematics processes. Educational Studies in Mathematics, 94(2), 205–222. https://doi.org/10.1007/s10649-016-9725-4

Saparwadi, L., Sa’dijah, C., As’ari, A. R., & Chandrad, T. D. (2020). The aspects and stages of reversible thinking of secondary school students in resolving the problems of fractional numbers. Systematic Reviews in Pharmacy, 11(6), 1302–1310.

Septian, A., & Komala, E. (2019). Kemampuan koneksi matematik dan motivasi belajar siswa dengan mengunakan model problem-based learning (PBL) berbantuan geogebra di SMP. Prisma, 8(1), 1. https://doi.org/10.35194/jp.v8i1.438

Steffe, L. P., & Olive, J. (2009). Children’s fractional knowledge. Springer Science & Business Media. https://doi.org/10.1007/978-1-4419-0591-8

Sundari, I., Fuadiah, N. F., & Fakhrudin, A. (2022). Pengembangan modul materi geometri kelas IV berbasis masalah berorientasi pada penalaran matematis siswa. Indonesian Research Journal on Education: Jurnal Ilmu Pendidikan, 2(3), 1236–1241. https://doi.org/10.31004/irje.v2i3.35

Sutiarso, S. (2020). Analysis of Student Reversible Thinking Skills on Graph Concept. Indonesian Journal of Science and Mathematics Education, 3(2), 185-195. https://doi.org/10.24042/ijsme.v3i2.6768

Takeuchi, H., & Shinno, Y. (2020). Comparing the lower secondary textbooks of Japan and England: A Praxeological analysis of symmetry and transformations in geometry. International Journal of Science and Mathematics Education, 18(4), 791–810. https://doi.org/10.1007/s10763-019-09982-3

Tzur, R. (2004). Teacher and students’ joint production of a reversible fraction conception. The Journal of Mathematical Behavior, 23, 93–114. https://doi.org/10.1016/j.jmathb.2003.12.006

Yang, D. C., Tseng, Y. K., & Wang, T. L. (2017). A comparison of geometry problems in middle-grade mathematics textbooks from Taiwan, Singapore, Finland, and the United States. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 2841–2857. https://doi.org/10.12973/eurasia.2017.00721a




DOI: http://dx.doi.org/10.24042/ajpm.v14i2.18116

Refbacks

  • There are currently no refbacks.


 

Indexed by:

 

 

Creative Commons License
Al-Jabar : Jurnal Pendidikan Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.