Algebraic Structure of Supernilpotent Radical Class Constructed from a Topology Thychonoff Space

Puguh Wahyu Prasetyo , Dian Ariesta Yuwaningsih , Burhanudin Arif Nurnugroho

Abstract


A radical class of rings is called a supernilpotent radicals if it is hereditary and it contains the class  for some positive integer  In this paper, we start by exploring the concept of Tychonoff space to build a supernilpotent radical. Let  be a Tychonoff space that does not contain any isolated point. The set  of all continuous real-valued functions defined on  is a prime essential ring. Finally, we can show that the class  of rings is a supernilpotent radical class containing the matrix ring .

 

 


Keywords


supernilpotent radical, Tychonoff space, prime essential rings

Full Text:

PDF

References


France-Jackson, H. (1987). On Atoms of The Lattice of Supernilpotent Radicals. Quaestiones Mathematicae, 251-255.

France-Jackson, H. (1993). On Prime Essential Rings. Bull. Austral. Math. Soc, 287-290.

France-Jackson, H., Wahyuni, S., & Wijayanti, I. E. (2015). Radical Related To Special Atoms Revisited. Bulletin of Australian Mathematical Society, 202-210.

Gardner, B. J., & Stewart, P. M. (1991). Prime Essential Rings. Proceedings of The Edinburgh Mathematical Society, 241-250.

Gardner, B. J., & Stewart, P. N. (1991). Prime Essential Ring. Proceedings of the Edinburgh Mathematical Society, 241-250.

Gardner, B. J., & Wiegandt, R. (2004). Radical Theory of Rings. New York: Marcel Dekker, Inc.

Moore, R. E., & Cloud, M. J. (2007). Computational Functional Analysis. Cambridge: Woodhead Publishing.

Munkres, J. R. (2000). Topology. New Jersey: Prentice Hall.

Nicholson, W. K., & Watters, J. F. (1988). Normal Radicals and Normal Classes of. Glasgow Math. J., 97-100.

Prasetyo, P. W., Wahyuni, S., Wijayanti, I. E., & France-Jackson, H. (2014). Dari Radikal Ring Ke Radikal Modul. Prosiding Seminar Nasional Matematika (pp. 272-282). Jember: Universitas Jember.

Prasetyo, P. W., Wijayanti, I. E., & France-Jackson, H. (2017). *p-Modues and A Special Class of Modules Determined by The Essential Class of Modules Determined By The Essential Closure of The Class of All *-Rings. JP Journal of Algebra, Number Theory and Applications, 11-20.

Prasetyo, P. W., Wijayanti, I. E., France-Jackson, H., & Repka, J. (2020). Weakly Special Class of Modules. Mathematics and Statistics, 23-27.

Wahyuni, S., Wijayanti, I. E., & France-Jackson, H. (2017). A Prime Essential Ring That Generates A Special Atom. Bulletin of The Australian Mathematical Society, 214-2018.




DOI: http://dx.doi.org/10.24042/ajpm.v11i2.6897

Refbacks

  • There are currently no refbacks.


 

Indexed by:

 

 

Creative Commons License
Al-Jabar : Jurnal Pendidikan Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.