Markovian modelling of transmission of tuberculosis cases in Indonesia

Andini Setyo Anggraeni, Faradiba Jabnabillah

Abstract


Indonesia is ranked as the second highest contributor to global cases of Tuberculosis (TB), which requires a focused approach to the transmission of tuberculosis within the country. This research aims to model and analyze the spread of TB cases in Indonesia. This research uses a discrete-time Markov chain with S-I-T-R-D states and Maximum Likelihood Estimation to model the transmission of TB cases. This research provides innovation in modeling the transmission of TB cases with a more complex model by including the possibility of relapse and treatment outcomes using historical data of TB cases in Indonesia. This research produces a matrix of transition probabilities for each state, first transition probabilities, steady state states, expected times for each transition and lifetime.


Keywords


Life Expectancy; Markov Chain; Probability Transition; Steady State; Tuberculosis.

Full Text:

PDF

References


Alim, K., Listiani, A., Anggraeni, A. S., & Effendie, A. R. (2019). Critical illness insurance pricing with stochastic interest rates model. Journal of Physics: Conference Series, 1341(6). https://doi.org/10.1088/1742-6596/1341/6/062026

Anggraeni, A. S., Listiani, A., Alim, K., & Effendie, A. R. (2019). Morbidity-mortality table construction for eleven chronical diseases (ECD) using constant force assumption. Journal of Physics: Conference Series, 1341(6). https://doi.org/10.1088/1742-6596/1341/6/062030

Atsilah Hasibuan, N., Jaya, I., Husein, I., & Sumatera Utara, U. (2022). Factors that affect the healing rate for patiens with tuberculosis of the lung use bayesian mixture survival. Journal of Analytical Research, 1(1), 51–63. https://doi.org/https://doi.org/10.4590/jarsic.v1i3.3

Bhardwaj, A. K., Kumar, D., Raina, S. K., Sharma, S., & Chander, V. (2015). Assessment of extra pulmonary tuberculosis (EPTB) cases from selected tuberculosis units (TUs) of Himachal Pradesh, India. International Journal of Health, 3(2), 29–33. https://doi.org/10.14419/ijh.v3i2.4567

Debanne, S. M., Bielefeld, R. A., Cauthen, G. M., Daniel, T. M., & Rowland, D. Y. (2000). Multivariate markovian modeling of tuberculosis: forecast for the united states. Emerging Infectious Diseases, 6(2), 148–157. https://doi.org/10.3201/eid0602.000207

Dubos, R. J. (1939). Bactericidal effect of an extract of a soil bacillus on gram positive cocci. Proceedings of the Society for Experimental Biology and Medicine, 40(2), 311–312. https://doi.org/https://doi.org/10.3181/00379727-40-10395P

Dubos R.J ., D. J. (1987). The white plague:tuberculosis, man, and society. Rutgers University Press.

Feldman, W. H., & Hinshaw, H. C. (1944). Effects of streptomycin on experimental tuberculosis in guinea pigs: Preliminary report. Proceedings of Staff Meetings of the Mayo Clinic, 19, 593–600.

Feldman, W. H., Hinshaw, H. C., & Mann, F. C. (1945). Streptomycin in experimental tuberculosis. American Review of Tuberculosis, 52(4), 269–298.

Hinshaw, C., Feldman, W. H., & Pfuetze, K. H. (1946). Treatment of tuberculosis with streptomycin: a summary of observations on one hundred cases. Journal of the American Medical Association, 132(13), 778–782.

Hoad, K. A., Hoog, A. H. va. t., Rosen, D., Marston, B., Nyabiage, L., Williams, B. G., Dye, C., & Cheng, R. C. H. (2009). Modelling local and global effects on the risk of contracting Tuberculosis using stochastic Markov-chain models. Mathematical Biosciences, 218(2), 98–104. https://doi.org/10.1016/j.mbs.2009.01.002

Houghton, L., Maher-Loughnan, G., Leslie, W., Perry, D. N. L., Beatty, D., & Sandiford, B. (1950). Treatment of pulmonary tuberculosis with streptomycin and para-aminosalicylic acid. Br. Med. J, 1073.

Kementerian Kesehatan RI. (2022). Tuberculosis Control in Indonesia 2022. The Acceptance of Islamic Hotel Concept in Malaysia: A Conceptual Paper, 3(July), 1–48. https://e-renggar.kemkes.go.id/file_performance/1-465827-06-4tahunan-710.pdf

Lestari, B. W., McAllister, S., Hadisoemarto, P. F., Afifah, N., Jani, I. D., Murray, M., van Crevel, R., Hill, P. C., & Alisjahbana, B. (2020). Patient pathways and delays to diagnosis and treatment of tuberculosis in an urban setting in Indonesia. The Lancet Regional Health - Western Pacific, 5, 100059. https://doi.org/10.1016/j.lanwpc.2020.100059

Long, E. R., & Ferebee, S. H. (1950). A controlled investigation of streptomycin treatment in pulmonary tuberculosis. Public Health Reports (1896-1970), 1421–1451.

Makaju, R., Mohammad, A., & Thakur, N. K. (2010). Scenario of extrapulmonary tuberculosis in a tertiary care center. Journal of Nepal Health Research Council, 8(1), 48–50.

Masnarivan, Y., & Haq, A. (2022). Pemodelan faktor risiko tuberkulosis paru di Sumatera Barat. Jambi Medical Journal “Jurnal Kedokteran Dan Kesehatan,” 10(1), 68–80.

Natarajan, A., Beena, P. M., Devnikar, A. V., & Mali, S. (2020). A systemic review on tuberculosis. Indian Journal of Tuberculosis, 67(3), 295–311. https://doi.org/10.1016/j.ijtb.2020.02.005

Noorcintanami, S., Widyaningsih, Y., & Abdullah, S. (2021). Geographically weighted models for modelling the prevalence of tuberculosis in Java. Journal of Physics: Conference Series, 1722(1), 0–8. https://doi.org/10.1088/1742-6596/1722/1/012089

Peter R. Donald & Paul D. van Helden. (2012). Antituberculosis chemotherapy (progress in respiratory research). British Journal of Clinical Pharmacology, 74(3), 549–550. https://doi.org/10.1111/j.1365-2125.2012.04251.x

Serfozo, R. (2009). Basic of applied stochastic processes. Springer.

Sharma, S. K., & Mohan, A. (2013). Tuberculosis: From an incurable scourge to a curable disease - journey over a millennium. The Indian Journal of Medical Research, 137(3), 455–493.

Twumasi, C., Asiedu, L., & Nortey, E. N. N. (2019). Markov Chain modeling of hiv, tuberculosis, and hepatitis b transmission in Ghana. Interdisciplinary Perspectives on Infectious Diseases, 2019. https://doi.org/10.1155/2019/9362492

World Health Organization. (2022). Global tuberculosis report 2022. World Health Organization. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022

Zhang, W. (2022). Disease clearance of tuberculosis infection: An in-host continuous-time Markov chain model. Applied Mathematics and Computation, 413, 126614. https://doi.org/10.1016/j.amc.2021.126614




DOI: http://dx.doi.org/10.24042/djm.v7i2.23477

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.