Autoregressive neural network (AR-NN) modeling to predict the inflation rate in West Java Province

Nabila Zahra, Kankan Parmikanti, Budi Nurani Ruchjana

Abstract


The Autoregressive (AR) model describes the situation where the data in the current observation of a time series depends on the previous observation data. AR models have linearity assumptions. However, in reality there is a non-linear tendency in the data so it needs to be combined with a Neural Network (NN) model. NN models can overcome nonlinear problems in data. The purpose of this research is to build an AR-NN model and apply it to the inflation rate data of West Java Province. The result of this study is an AR(2)-NN model generated by summing the AR(2) prediction results with the residual AR(2) prediction results using a NN model that has a network architecture (4-5-1). The results of data processing show that the AR(2)-NN model is able to increase the level of forecast accuracy from a reasonable forecast to an accurate forecast so that the AR(2)-NN model is better used in West Java Province inflation rate data. This is supported by the smaller MAPE values compared to the AR(2) model. The AR-NN model is expected to be a recommendation for predicting inflation rates in the future.


Keywords


AR-NN; Autoregressive; Inflation; Neural Network.

Full Text:

PDF

References


Anggraini, D. A., Wahyuningsih, S., & Siringoringo, M. (2023). Peramalan harga minyak mentah indonesia jenis sepinggan yakin mix menggunakan model hybrid autoregressive integrated moving average - neural network. Jurnal Riset Pembangunan, 5(2), 105–118.

https://doi.org/10.36087/jrp.v5i2.138

Astuti, F., Bekti, R. D., Keliat, A. A. B., & Sebo, T. I. (2023). Backpropagation algorithm modeling to predict the number of foreign tourist visits to indonesia via air gates. Desimal: Jurnal Matematika, 6(3), 337–348.

http://dx.doi.org/10.24042/djm.v6i3.19751

Badan Pusat Statistik. (2023). Inflasi 90 Kota (Umum). Retrieved from https://www.bps.go.id/indicator/3/1708/1/inflasi-90-kota-umum-.html

Badan Pusat Statistik Provinsi Jawa Barat. (2023). Inflasi bulanan tujuh kota (y on y) (persen). Retrieved from https://jabar.bps.go.id/indicator/3/46/1/inflasi-bulanan-tujuh-kota-y-on-y-.html

Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2008). Time series analysis forecasting and control. New Jersey: Wiley.

Dananjaya, R. H., Sutrisno, & Fitriady, S. (2022). Penerapan artificial neural network (ANN) dalam memprediksi kapasitas dukung fondasi tiang. Jurnal Matriks Teknik Sipil, 10(4).

https://doi.org/10.20961/mateksi.v10i4.65034

Enders, W. (2015). Applied econometric time series. 4th edition. New Jersey: Wiley.

Fausett, L. (1994). Fundamentals of neural networks architectures, algorithms, and applications. New Jersey: Prentice Hall.

Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70 / 30 or 80 / 20 Relation between training and testing sets : A pedagogical explanation. Departmental Technical Reports (CS).

https://scholarworks.utep.edu/cs_techrep/1209

Gio, P. U., & Irawan, D. E. (2016). Belajar statistika dengan R. Medan: USU Press.

Henderi, Wahyuningsih, T., & Rahwanto, E. (2021). Comparison of min-max normalization and z-score normalization in the k-nearest neighbor (kNN) algorithm to test the accuracy of types of breast cancer. International Journal of Informatics and Information System, 4(1), 13–20.

https://doi.org/10.47738/ijiis.v4i1.73

Julpan, Nababan, E. B., & Zarlis, M. (2015). Analisis fungsi aktivasi sigmoid biner dan sigmoid bipolar dalam algoritma backpropagation pada prediksi kemampuan siswa. Jurnal Teknovasi, 02(1), 103–116.

Kamadewi, R., & Achmad, A. I. (2020). Pemodelan hybrid ARIMA (Autoregressive Integrated Moving Average) – ANN (Artificial Neural Network) pada data inflasi Indonesia tahun 2009 - 2020. Prosiding Statistika, 33–41.

http://dx.doi.org/10.29313/.v7i1.25503

Lawrence, K. D., Klimberg, R. K., & Lawrence, S. M. (2009). Fundamentals of forecasting using excel. New York: Industrial Press Inc.

Mawaddah, E. (2023). Penerapan model deret waktu ARIMA pada data kecelakaan lalu lintas di Kabupaten Mempawah. Buletin Ilmiah Mat. Stat dan Terapannya (Bimaster), 12(4), 325-334.

https://dx.doi.org/10.26418/bbimst.v12i4.68324

Pratiwi, D., & Hadijati, M. (2021). Inflation modeling in Indonesia using hybrid autoregressive integrated moving average (ARIMA)-neural network (NN). IOP Conference Series: Materials Science and Engineering. DOI: 10.1088/1757-899X/1115/1/012058

Rusdi. (2011). Uji akar-akar unit dalam model runtun waktu autoregresif. Statistika, 11(2), pp. 67–78.

https://doi.org/10.29313/jstat.v11i2.1049

Sharma, S. (2017, September 23). Epoch vs batch size vs iterations. Medium. https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9

Silvia, E., Wardi, Y., & Aimon, H. (2013). Analisis pertumbuhan ekonomi, investasi, dan inflasi di Indonesia. Jurnal Kajian Ekonomi, 1(2), pp. 224- 243.

Simanungkalit, E. F. B. (2020). Pengaruh inflasi terhadap pertumbuhan ekonomi di Indonesia. Journal of Management: Small and Medium Enterprises (SMEs), 13(3), 327-340.

https://doi.org/10.35508/jom.v13i3.3311

Singh, Y., & Chauhan, A. S. (2009). Neural network in data mining. Journal of Theoritical and Applied Information Technology, 5(1), 37-42.

Sorlury, F. N., Mongi, C. E., & Nainggolan, N. (2022). Penggunaan model autoregressive integrated moving average (ARIMA) untuk meramalkan nilai tukar petani (NTP) di Provinsi Sulawesi Utara. d’Cartesian, 11(1), 59–66. Retrieved from https://ejournal.unsrat.ac.id/v3/index.php/decartesian/article/view/38744

Wei, W.W.S. (2006). Time series analysis: univariate and multivariate Methods. 2nd Edition. New Jersey: Pearson Prentice.

Wilujeng, F. R. (2018). Metode transformasi box cox pada model regresi berganda untuk mengetahui faktor yang berpengaruh pada produktivitas penangkapan ikan laut. Jurnal Muara Sains, Teknologi, Kedokteran, dan Ilmu Kesehatan, 2(1), 166–175.

https://doi.org/10.24912/jmstkik.v2i1.1611

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175.

https://doi.org/10.1016/S0925-2312(01)00702-0




DOI: http://dx.doi.org/10.24042/djm.v7i2.22626

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.