Spatial Modeling for Poverty: The Comparison of Spatial Error Model and Geographic Weighted Regression

Achi Rinaldi, Yuni Susianto, Budi Santoso, Wahyu Kusumaningtyas

Abstract


This study aims to analyze poverty using spatial models. The researchers also compared the Spatial Error Model (SEM) and Geographically Weighted Regression (GWR). The comparison of the two models was based on the estimation evaluation criteria and the constructed spatial associations. Spatial regression is considered very appropriate to be used to model the relationship pattern between poverty and explanatory variables when the observed data has a spatial effect caused by the proximity between the observation areas. The spatial dependence of errors on observational data can be overcome using SEM, while the effect of heterogeneity of spatial variance can overcome using GWR.


Keywords


Geographically Weighted Regression, poverty, regression, spatial dependence, Spatial Error Model.

Full Text:

PDF

References


Anselin, L. (1988). Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geographical Analysis, 20(1), 1–17.

Anselin, L. (2009). Spatial regression. The SAGE Handbook of Spatial Analysis, 1, 255–276.

Anselin, L., & Florax, R. (2012). New directions in spatial econometrics. Springer Science & Business Media.

Anselin, L., & Kelejian, H. H. (1997). Testing for spatial error autocorrelation in the presence of endogenous regressors. International Regional Science Review, 20(1–2), 153–182.

Arbia, G., & Baltagi, B. H. (2008). Spatial econometrics: Methods and applications. Springer Science & Business Media.

Atkinson, A. B. (1987). On the measurement of poverty. Econometrica: Journal of the Econometric Society, 749–764.

Baltagi, B. H., & Li, D. (2001). LM tests for functional form and spatial error correlation. International Regional Science Review, 24(2), 194–225.

Bivand, R. S., Pebesma, E. J., Gómez-Rubio, V., & Pebesma, E. J. (2008). Applied spatial data analysis with R (Vol. 747248717). Springer.

Blangiardo, M., & Cameletti, M. (2015). Spatial and spatio-temporal Bayesian models with R-INLA. John Wiley & Sons.

Breusch, T. S., & Pagan, A. R. (1979). A simple test for heteroscedasticity and random coefficient variation. Econometrica: Journal of the Econometric Society, 1287–1294.

Charlton, M., Fotheringham, S., & Brunsdon, C. (2009). Geographically weighted regression. White Paper. National Centre for Geocomputation. National University of Ireland Maynooth, 2.

Djuraidah, A., & Wigena, A. H. (2012). Regresi Spasial untuk Menentuan Faktorfaktor Kemiskinan di Provinsi Jawa Timur. Statistika, 12(1).

Draper, N. R., & Smith, H. (1998). Applied regression analysis (Vol. 326). John Wiley & Sons.

Ferezagia, D. V. (2018). Analisis Tingkat Kemiskinan di Indonesia. Jurnal Sosial Humaniora Terapan, 1(1).

Fox, J., & Weisberg, S. (2018). An R companion to applied regression. Sage publications.

Griffith, D. A. (2008). Spatial-filtering-based contributions to a critique of geographically weighted regression (GWR). Environment and Planning A, 40(11), 2751–2769.

Kelejian, H. H., & Prucha, I. R. (2010). Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. Journal of Econometrics, 157(1), 53–67.

Lawson, A. B. (2013). Statistical methods in spatial epidemiology. John Wiley & Sons.

Lee, L., & Yu, J. (2010). Estimation of spatial autoregressive panel data models with fixed effects. Journal of Econometrics, 154(2), 165–185.

LeSage, J., & Pace, R. K. (2009). Introduction to spatial econometrics. Chapman and Hall/CRC.

Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62(318), 399–402.

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons.

Myers, R. H. (1990). Classical and modern regression with applications (Vol. 2). Duxbury press Belmont, CA.

Nurwati, N. (2008). Kemiskinan: Model pengukuran, permasalahan dan alternatif kebijakan. Jurnal Kependudukan Padjadjaran, 10(1), 1.

Putra, A. S., Tong, G., & Pribadi, D. O. (2020). Spatial Analysis of Socio-Economic Driving Factors of Food Expenditure Variation between Provinces in Indonesia. Sustainability, 12(4), 1638.

Rinaldi, A., Djuraidah, A., Wigena, A. H., Mangku, I. W., & Gunawan, D. (2017). Spatial Extreme Models with Copula to Determine Extreme Rainfall Zone. Applied Mathematical Sciences, 11(27), 1327–1336. https://doi.org/10.12988/ams.2017.74124

Schabenberger, O., & Gotway, C. A. (2017). Statistical methods for spatial data analysis. CRC press.

Tasyurek, M., & Celik, M. (2020). RNN-GWR: A geographically weighted regression approach for frequently updated data. Neurocomputing, 399, 258–270.

Timm, N. H. (2002). Applied multivariate analysis. Springer.

Ver Hoef, J. M., Peterson, E. E., Hooten, M. B., Hanks, E. M., & Fortin, M. (2018). Spatial autoregressive models for statistical inference from ecological data. Ecological Monographs, 88(1), 36–59.

Weisberg, S. (2013). Applied linear regression. John Wiley & Sons.

Zhang, Y., Zhang, D., & Miller, E. J. (2021). Spatial Autoregressive Analysis and Modeling of Housing Prices in City of Toronto. Journal of Urban Planning and Development, 147(1), 5021003.

Zhou, Q., Wang, C., & Fang, S. (2019). Application of geographically weighted regression (GWR) in the analysis of the cause of haze pollution in China. Atmospheric Pollution Research, 10(3), 835–846.

Zhu, C., Zhang, X., Zhou, M., He, S., Gan, M., Yang, L., & Wang, K. (2020). Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecological Indicators, 117, 106654.




DOI: http://dx.doi.org/10.24042/ajpm.v12i1.8671

Refbacks

  • There are currently no refbacks.


 

Indexed by:

 

 

Creative Commons License
Al-Jabar : Jurnal Pendidikan Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.