Eigenvalue decomposition of a symmetric matrix over the symmetrized max-plus algebra

Suroto Suroto

Abstract


This paper discusses topics in the symmetrized max-plus algebra. In this study, it will be shown the existence of eigenvalue decomposition of a symmetric matrix over symmetrized max-plus algebra. Eigenvalue decomposition is shown by using a function that corresponds to the symmetrized max-plus algebra with conventional algebra. The result obtained is the existence of eigenvalue decomposition of a symmetric matrix over symmetrized max-plus algebra and its application to determine eigenvalues and eigenvectors.


Keywords


decomposition; eigenvalue; existence; symmetric; symmetrized max-plus algebra

Full Text:

PDF

References


Anton, H., & Rorres, C. (2010). Elementary linear algebra with application. In International Series in Operations Research and Management Science (Tenth, Vol. 123). John Wiley & Sons.

Ariyanti, G. (2021). A note on eigenvalue of matrices over the symmetrized max-plus algebra. Journal of Physics: Conference Series, 1828(1). https://doi.org/10.1088/1742-6596/1828/1/012124

Ariyanti, G., Suparwanto, A., & Surodjo, A. (2015). A note on diagonalization of matrices over a symmetrized max plus algebra. The 7th Seams-UGM 2015, 59–66.

De Schutter, B., & De Moor, B. (2002). The QR decomposition and the singular value decomposition in the symmetrized max-plus algebra revisited. SIAM Review, 44(3). https://doi.org/10.1137/S00361445024039

De Schutter, B., van den Boom, T., Xu, J., & Farahani, S. S. (2020). Analysis and control of max-plus linear discrete-event systems: An introduction. Discrete Event Dynamic Systems: Theory and Applications, 30(1). https://doi.org/10.1007/s10626-019-00294-w

Golub, G. H., & Loan, C. F. Van. (2013). Matrix computations (Fourth).

Hogben, L. (2014). Handbook of linear algebra (Second).

James, H. (2016). An algorithm for computing the eigenvalues of a max-plus matrix polynomial.

Kuttler, K. (2012). Elementary linear algebra.

Lay, D. C., Lay, S. R., & McDonald, J. J. (2016). Linear algebra and its applications (Fifth). Pearson.

Leake, C., Baccelli, F., Cohen, G., Olsder, G. J., & Quadrat, J.-P. (1994). Synchronization and linearity: An algebra for discrete event systems. The Journal of the Operational Research Society, 45(1). https://doi.org/10.2307/2583959

Suroto, Suparwanto, A., & Palupi, D. J. E. (2018). The lu-decomposition in the symmetrized max-plus algebra. Far East Journal of Mathematical Sciences (FJMS), 108(2), 253–272. https://doi.org/http://dx.doi.org/10.17654/MS108020253

Yonggu, K., & Hee, S. H. (2018). Eigenspaces of max-plus matrices: An overview. Journal for History of Mathematics, 31(1), 1–17. https://doi.org/http://dx.doi.org/10.14477/jhm.2018.31.1.001




DOI: http://dx.doi.org/10.24042/djm.v4i3.9959

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.