Confidence interval estimation of gamma distribution lifetime data using score and bootstrap methods

Larasati Larasati, Rudi Ruswandi, Fitriani Fitriani

Abstract


Confidence interval estimation of parameters determines the value interval, which is calculated based on statistical measurements and has specific estimates probability that contains the actual parameters. A method is needed to estimate the parameters' confidence interval, and the methods used are the Score method and the Bootstrap method. This study aims to estimate parameters by using the maximum likelihood estimation method and analyze the reliability of the aircraft engine cooling system's lifetime that follows the Gamma Distribution, and estimate the confidence interval of the parameters.


Keywords


Convidence Interval Estimation; Gamma Distribution; Maximum Likelihood Estimation; Score Method; Bootstrap Method; Reliability

Full Text:

PDF

References


Abid, S. H., & Al-Hassany, S. A. (2016). On the inverted gamma distribution. International Journal of Systems Science and Applied Mathematics, 1(3), 16–22.

Bain, L. J., & Engelhardt, M. (1992). Introduction to probability and mathematical statistic (2nd ed.).

Bertsimas, D., & Nohadani, O. (2019). Robust maximum likelihood estimation. INFORMS Journal on Computing, 31(3), NFORMS Journal on Computing.

Boland, P. J. ., El-Neweihi, E., & Proschan, F. (1994). Applications of the Hazard Rate Ordering in Reliability and Order Statistics Reviewed work ( s ): Source : Journal of Applied Probability , Vol . 31 , No . 1 ( Mar ., 1994 ), pp . 180-19. Journal of Applied Probability, 31(1), 180–192.

J, K., Ngesa, O., & Orwa, G. (2019). On Generalized gamma distribution and its application to survival data. International Journal of Statistics and Probability, 8(5), 85–102. https://doi.org/10.5539/ijsp.v8n5p85

Khamkong, M. (2018). Parameter estimation method for the two parameter gamma distribution based on transformation. International Journal of Applied Engineering Research, 13(2), 1261–1264.

Lawless, J. F. (1982). Statistical model and method for life time data. John Wiley and Sons, Inc.

Sangnawakij, P., Böhning, D., Niwitpong, S. A., Adams, S., Stanton, M., & Holling, H. (2019). Meta-analysis without study-specific variance information: Heterogeneity case. Statistical Methods in Medical Research, 28(1), 196–210. https://doi.org/10.1177/0962280217718867

Sangnawakij, P., & Niwitpong, S. A. (2017). Confidence intervals for functions of coefficients of variation with bounded parameter spaces in two gamma distributions. Songklanakarin Journal of Science and Technology, 39(1), 27–39. https://doi.org/10.14456/sjst-psu.2017.4

Sharma, V. K., Singh, S. K., & Singh, U. (2017). Classical and bayesian methods of estimation for power lindley distribution with application to waiting time data. Communications for Statistical Applications and Methods, 24(3), 193–209. https://doi.org/10.5351/CSAM.2017.24.3.193

Soejati, Z., & Subanar. (1988). Inferensi bayesian. Karunika Universitas Terbuka.




DOI: http://dx.doi.org/10.24042/djm.v4i1.7737

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.