El nino index prediction model using quantile mapping approach on sea surface temperature data
Abstract
El Nino is a global climate phenomenon caused by the warming of sea surface temperatures in the eastern Pacific Ocean. El Nino has a powerful effect on the intensity of rainfall in several areas in Indonesia. El Nino impacts can be minimized by predicting the El Nino index from the sea surface temperature in the Nino 3.4 area. Therefore, many researchers have tried to predict sea surface temperature, and many prediction data are available, one of which is ECMWF. But, in reality, the ECMWF data still contains systematic errors or bias towards the observations. Consequently, El Nino predictions using ECMWF data are less accurate. For that reason, this study aims to correct the ECMWF data in the Nino 3.4 area using statistical bias correction with a quantile mapping approach. This method uses ECMWF data from 1983-2012 as training data and 2013-2018 as testing data. For this case, the results showed that 60% of El Nino's predictions on the testing data had improved the mean value. Also, all of El Nino's predictions on the testing data have improved the standard deviation value. Moreover, data testing's expected error can be corrected for all months in the 1st to 4th lead times. But, in the 5th to 7th lead times, only November-June can be corrected.
Keywords
Full Text:
PDFReferences
Aldrian, E., & Susanto, R. D. (2003). Identification of three dominant rainfall regions within indonesia and their relationship to sea surface temperature. International Journal of Climatology, 23(12), 1435–1452. https://doi.org/10.1002/joc.950
Ayugi, B., Tan, G., Ruoyun, N., Babaousmail, H., Ojara, M., Wido, H., Mumo, L., Ngoma, N. H., Nooni, I. K., & Ongoma, V. (2020). Quantile mapping bias correction on rossby centre regional climate models for precipitation analysis over Kenya, East Africa. Water (Switzerland), 12(3), 801. https://doi.org/10.3390/w12030801
Bouyé, E., Durrleman, V., Nikeghbali, A., Riboulet, G., & Roncalli, T. (2000). Copulas for finance - a reading guide and some applications. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1032533
Chhikara, R. S., & Folks, J. L. (1977). The inverse gaussian distribution as a lifetime model. Technometrics, 19(4), 461–468. https://doi.org/10.1080/00401706.1977.10489586
Dasanto, B. D., Boer, R., Pramudya, B., & Suharnoto, Y. (2014). Evaluasi curah hujan TRMM menggunakan pendekatan koreksi bias statistik. Jurnal Tanah Dan Iklim, 38(1), 15–24. https://doi.org/10.2017/jti.v38i1.6244
Decani, J. S., & Stine, R. A. (1986). A note on deriving the information matrix for a logistic distribution. American Statistician, 40(3), 220–222. https://doi.org/10.1080/00031305.1986.10475398
E.J. Gumbel. (1941). Return Period of Floods. The Annals of Mathematical Statistics, 12(2), 163–190.
Hald, A. (1949). Maximum likelihood estimation of the parameters of a normal distribution which is truncated at a known point. Scandinavian Actuarial Journal, 1949(1), 119–134. https://doi.org/10.1080/03461238.1949.10419767
Hannachi, A. (2004). A primer for EOF analysis of climate data. Department of Meteorology, University of Reading, 1(29).
Hosking, J. R. M., Wallis, J. R., & Wood, E. F. (1985). Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics, 27(3), 251–261.
Katiraie-Boroujerdy, P. S., Naeini, M. R., Asanjan, A. A., Chavoshian, A., Hsu, K. lin, & Sorooshian, S. (2020). Bias correction of satellite-based precipitation estimations using quantile mapping approach in different climate regions of Iran. Remote Sensing, 12(13), 2102. https://doi.org/10.3390/rs12132102
Kollu, R., Rayapudi, S. R., Narasimham, S. V. L., & Pakkurthi, K. M. (2012). Mixture probability distribution functions to model wind speed distributions. International Journal of Energy and Environmental Engineering, 3(1), 1–10. https://doi.org/10.1186/2251-6832-3-27
Lealdi, D., Nurdiati, S., & Sopaheluwakan, A. (2018). Statistical bias correction modelling for seasonal rainfall forecast for the case of Bali island. Journal of Physics: Conference Series, 1008(1), 12–18. https://doi.org/10.1088/1742-6596/1008/1/012018
Misnawati, Boer, R., June, T., & Faqih, A. (2018). Perbandingan metodologi koreksi bias data curah hujan CHIRPS. LIMNOTEK - Perairan Darat Tropis Di Indonesia, 25(1), 18–29. https://limnotek.limnologi.lipi.go.id/index.php/limnotek/article/view/224
Nabilah, F., Prasetyo, Y., & Sukmono, A. (2017). Analisis pengaruh fenomena el nino dan la nina terhadap curah hujan tahun 1998 - 2016 menggunakan indikator oni (Oceanic Nino Index) (Studi Kasus : Provinsi Jawa Barat). Jurnal Geodesi Undip, 6(4), 402–412.
Najib, M. K., & Nurdiati, S. (2021). Koreksi bias statistik pada data prediksi suhu permukaan air laut di wilayah indian ocean dipole barat dan timur. Jambura Geoscience Review, 3(1), 9–17. https://doi.org/10.34312/jgeosrev.v3i1.8259
Nurdiati, S., Sopaheluwakan, A., & Najib, M. K. (2019). Statistical bias correction for predictions of indian ocean dipole index with quantile mapping approch. International MIPAnet Conference on Science and Mathematics (IMC-SciMath), Medan.
Passow, C., & Donner, R. V. (2020). Regression-based distribution mapping for bias correction of climate model outputs using linear quantile regression. Stochastic Environmental Research and Risk Assessment, 34(1), 87–102. https://doi.org/10.1007/s00477-019-01750-7
Pastén-Zapata, E., Jones, J. M., Moggridge, H., & Widmann, M. (2020). Evaluation of the performance of Euro-CORDEX Regional Climate Models for assessing hydrological climate change impacts in Great Britain: A comparison of different spatial resolutions and quantile mapping bias correction methods. Journal of Hydrology, 584, 124653.
Philander, S. G. (1989). El Niño, La Niña, and the Southern Oscillation. International Geophysics Series, 46, X–289.
Piani, C., Haerter, J. O., & Coppola, E. (2010). Statistical bias correction for daily precipitation in regional climate models over Europe. Theoretical and Applied Climatology, 99(1), 187–192. https://doi.org/10.1007/s00704-009-0134-9
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., & Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14), 4407. https://doi.org/10.1029/2002jd002670
Shonk, J. K., Demissie, T. D., & Toniazzo, T. (2019). A double ITCZ phenomenology of wind errors in the equatorial Atlantic in seasonal forecasts with ECMWF models. Atmospheric Chemistry and Physics, 19(17), 11383–11399.
Taufik, & Marnita. (2004). IPBA (Imu pengetahuan bumi dan antariksa). Universitas Al Muslim.
Trenberth, K. E. (1997). The definition of el niño. Bulletin of the American Meteorological Society, 78(12), 2771–2777. https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2
Trenberth, K., & National Center for Atmospheric Research Staff. (2020). The climate data guide: Nino SST indices (Nino 1+2, 3, 3.4, 4; ONI and TNI). https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
Walpole, R. E. (1990). Pengantar statistika, edisi ke-3 (Introduction to statistics). PT Gramedia Pustaka Utama.
DOI: http://dx.doi.org/10.24042/djm.v4i1.7595
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Desimal: Jurnal Matematika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.