Canonical Correlation Analysis of Global Climate Elements and Rainfall in the West Java Regions

Arisya Maulina Bowo, iin Irianingsih, Budi Nurani Ruchjana

Abstract


Indonesia has a diversity of climate influenced by several global phenomena such as El Nino Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), and Asian-Australian Monsoon. Continuously climate changing indirectly causes a hydrometeorological disaster. The purpose of this study was to analyze the relationship between global climate elements (ENSO, IOD, Asian-Australian Monsoon) with rainfall in the West Java regions (Bogor Regency, Bandung Regency, Sukabumi Regency, Garut Regency, and Kuningan Regency) simultaneously. The selection of the five regions was based on the natural disaster reports of Badan Nasional Penanggulangan Bencana (BNPB). The research method used was a quantitative research method through one of multivariate analysis technique called canonical correlation analysis. The results of this study indicate that there was a simultaneous relationship between global climate elements, with rainfall in the West Java regions by 0.819. The global climate element and rainfall in the West Java regions that most influenced the relationship were Asian-Austalian Monsoon and Kuningan Regency rainfall.


Keywords


Canonical Correlation; Global Climate Elements; Rainfall; Relationship; Simultaneous

Full Text:

PDF

References


Aldrian, E., M. Karmini & Budiman. (2011). Adaptasi dan Mitigasi Perubahan Iklim di Indonesia. Jakarta: Pusat Perubahan Iklim dan Kualitas Udara Kedeputian Bidang Klimatologi, BMKG.

Chaghooshi, A.J., M.S. Neshan & M.M. Moghadam. (2015). Canonical Correlation Analysis Between Supply Chain Qualitu Management and Competitive Advantages. Foundations of Management, 7, 83-92.

Hair, J.F., Jr.W.C. Black, B.J. Babin & R.E. Anderson. (2009). Multivariate Data Analysis. (7thed.). New York: Prentice Hall International, Inc.

Hotelling, H. (1936). Relations Between Two Sets of Variates. Biometrika, 28 (3-4), 321-377.

Irianingsih, I., N. Gusriani, S. Kulsum & K. Parmikanti. (2016). Analisis Korelasi Kanonik Perilaku Belajar terhadap Prestasi Belajar Siswa SMP (Studi Kasus Siswa SMPN 1 Sukasari Purwakarta). Prosiding Seminar Matematika dan Pendidikan Matematika, 693-703.

Johnson, R.A. & D.W. Wichern. (1998). Applied Multivariate Statistical Analysis. (4thed.). New York: Prentice Hall.

Ningsih, B.H.S & W.W. Putranto. (2019). Dampak Kejadian La Niña terhadap Curah Hujan di Kabupaten Jembrana. Kappa Journal, 3, 18-30.

Qiu, Q. K. Shi, X.J. Qiao & K. Jiang. (2016). Determining the Dominant Environmental Parameters for Greenhouse Tomato Seedling Growth Modeling Using Canonical Correlation Analysis. IFAC-PapersOnLine, 49 (16), 387-391.

Rencher, A.C. (1998). Multivariate Statistical Inference and Applications. New York: John Wiley & Sons, Inc.

Ridwan, M. (2019). Prakiraan Musim Kemarau Tahun 2019 di Indonesia. https://www.bmkg.go.id/berita/?p=prakiraan-musim-kemarau-tahun-2019-di-indonesia〈=ID&s=

detil. (Diakses pada tanggal 14 Juli 2019 20:13).

Rustiana, S., B.N. Ruchjana, A.S. Abdullah, E. Hermawan, S.B. Sipayug, I.G.N.M. Jaya & Krismianto. (2017). Rainfall Prediction of Cimanuk Watershed Regions with Canonical Correlation Analysis (CCA). J. Phys.: Conf. Ser. 893 012021.

Walpole, R.E., R.H. Myers, S.L. Myers & K. Ye. (2011). Probablility & Statistics for Engineers & Scientics (9th ed.). Boston: Prentice Hall.

Whittaker, J., C. Whitehead & M. Somers. (2005). The Neglog Transformation and Quantile Regression for the Analysis of a Large Credit Scoring Database. Applied Statistics, 54 (5), 863-878.

Yudiaatmaja, F. (2013). Analisis Regresi dengan Menggunakan Aplikasi Komputer Statistik SPSS. Jakarta: Gramedia Pustaka Utama.




DOI: http://dx.doi.org/10.24042/djm.v3i2.5870

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.