Mathematical modelling of covid-19 using health mask, vaccination, quarantine, and asymptomatic case

Muhammad Manaqib , Madona Yunita Wijaya , Amelia Nur Yahya

Abstract


This study develops a SEIR (Susceptible, Exposed, Infectious, and Recovered) model to model the spread of COVID-19 by adding the use of health masks, vaccinations, quarantines, and asymptomatic compartments. The model is analyzed using equilibrium point stability analysis and numerical simulation. Based on the system, two equilibrium points are obtained, namely the disease-free equilibrium point and the endemic equilibrium point, and the basic reproduction number (Ro). The stability analysis of the disease-free equilibrium point will be locally asymptotically stable if Ro<1. The numerical simulation results show that the disease will disappear from the population if Ro<1  and remain in the population if Ro>1 . Based on the sensitivity analysis, parameters with significant impact are the level of awareness of individuals in using health masks, vaccination rates, contact rates with symptomatic or asymptomatic infected individuals, and quarantine rates for symptomatic infected individuals.


Keywords


Basic Reproduction Number; Covid-19; Equilibrium Point; SEIR Model; Vaccination.

Full Text:

PDF

References


Aldila, D., Khoshnaw, S. H. A., Safitri, E., Anwar, Y. R., Bakry, A. R. Q., Samiadji, B. M., … Salim, S. N. (2020). A mathematical study on the spread of covid-19 considering social distancing and rapid assessment: The case of jakarta, indonesia. Chaos, Solitons & Fractals, 139, 110042. https://doi.org/10.1016/j.chaos.2020.110042

Aldila, D., Ndii, M. Z., & Samiadji, B. M. (2020). Optimal control on covid-19 eradication program in Indonesia under the effect of community awareness. Mathematical Biosciences and Engineering, 17(6), 6355–6389. https://doi.org/10.3934/mbe.2020335

Ali, M., Shah, S. T. H., Imran, M., & Khan, A. (2020). The role of asymptomatic class, quarantine and isolation in the transmission of covid-19. Journal of Biological Dynamics, 14(1), 389–408. https://doi.org/10.1080/17513758.2020.1773000

Angeli, M., Neofotistos, G., Mattheakis, M., & Kaxiras, E. (2022). Modeling the effect of the vaccination campaign on the covid-19 pandemic. Chaos, Solitons & Fractals, 154, 111621. https://doi.org/10.1016/j.chaos.2021.111621

Atmojo, J. T., Akbar, P. S., Kuntari, S., Yulianti, I., & Darmayanti, A. T. (2020). Definisi dan jalur penularan severe acute respiratory syndrome coronavirus 2 (sars-cov-2) atau covid-19. Jurnal Pendidikan Kesehatan, 9(1), 57. https://doi.org/10.31290/jpk.v9i1.1513

Badan Pusat Statistik. (2020). Hasil sensus penduduk 2020.

Daud, A. A. M. (2021). A note on lienard-chipart criteria and its application to epidemic models. Mathematics and Statistics, 9(1). https://doi.org/10.13189/ms.2021.090107

De León, C. V. (2009). Constructions of lyapunov functions for classic sis, sir and sirs epidemic models with variable population size. Foro-Red-Mat: Revista Electrónica de Contenido Matemático, 26(5).

Ditjen P2P Kementrian Kesehatan. (2021). Program vaksinasi covid-19 mulai dilakukan, presiden orang pertama penerima suntikan vaksin covid-19.

Foy, B. H., Wahl, B., Mehta, K., Shet, A., Menon, G. I., & Britto, C. (2021). Comparing covid-19 vaccine allocation strategies in india: A mathematical modelling study. International Journal of Infectious Diseases, 103. https://doi.org/10.1016/j.ijid.2020.12.075

Ghostine, R., Gharamti, M., Hassrouny, S., & Hoteit, I. (2021). An extended seir model with vaccination for forecasting the covid-19 pandemic in saudi arabia using an ensemble kalman filter. Mathematics, 9(6), 636. https://doi.org/10.3390/math9060636

Iboi, E. A., Ngonghala, C. N., & Gumel, A. B. (2020). Will an imperfect vaccine curtail the covid-19 pandemic in the U.S.? Infectious Disease Modelling, 5. https://doi.org/10.1016/j.idm.2020.07.006

Imran, M., Wu, M., Zhao, Y., Be?ed, E., Alonazi, W., & Khan, M. J. (2021). Mathematical modelling of sir for covid-19 forecasting. Revista Argentina de Clinica Psicologica, 30(1), 218.

Ivanova, M., & Dospatliev, L. (2021). Data analytics and sir modeling of covid-19 in bulgaria. International Journal of Apllied Mathematics, 33(6). https://doi.org/10.12732/ijam.v33i6.10

Kertes, J., Gez, S. B., Saciuk, Y., Supino-Rosin, L., Stein, N. S., Mizrahi-Reuveni, M., & Zohar, A. E. (2022). Effectiveness of mrna bnt162b2 vaccine 6 months after vaccination among patients in large health maintenance organization, israel. Emerging Infectious Diseases, 28(2), 338–346. https://doi.org/10.3201/eid2802.211834

Levin, S. A. (2002). Descartes’ rule of signs - How hard can it be? .

Liao, Z., Lan, P., Liao, Z., Zhang, Y., & Liu, S. (2020). Tw-sir: time-window based sir for covid-19 forecasts. Scientific Reports, 10(1), 22454. https://doi.org/10.1038/s41598-020-80007-8

Manaqib, M., Fauziah, I., & Hartati, E. (2021). Model matematika penyebaran covid-19 dengan penggunaan masker kesehatan dan karantina. Jambura Journal of Biomathematics (JJBM), 2(2), 68–79. https://doi.org/10.34312/jjbm.v2i2.10483

Manaqib, M., Fauziah, I., & Mujiyanti, M. (2019). Mathematical model for mers-cov disease transmission with medical mask usage and vaccination. InPrime: Indonesian Journal of Pure and Applied Mathematics, 1(2). https://doi.org/10.15408/inprime.v1i2.13553

Mitra, A. (2020). Covid-19 in india and sir model. JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 15(7). https://doi.org/10.26782/jmcms.2020.07.00001

Nuha, A. R., Achmad, N., & Supu, N. ’ain. (2021). Analisis model matematika penyebaran covid-19 dengan intervensi vaksinasi dan pengobatan. Jurnal Matematika UNAND, 10(3), 406. https://doi.org/10.25077/jmu.10.3.406-422.2021

Pani, A., Cento, V., Vismara, C., Campisi, D., Di Ruscio, F., Romandini, A., … Scaglione, F. (2021). Results of the renaissance study: Response to bnt162b2 covid-19 vaccine—short- and long-term immune response evaluation in health care workers. Mayo Clinic Proceedings, 96(12), 2966–2979. https://doi.org/10.1016/j.mayocp.2021.08.013

Resmawan, R., & Yahya, L. (2020). Sensitivity analysis of mathematical model of coronavirus disease (covid-19) transmission. CAUCHY: Jurnal Matematika Murni Dan Aplikasi, 6(2), 91–99. https://doi.org/10.18860/ca.v6i2.9165

Satuan Tugas Penanganan COVID-19. (2020). Apakah vaksin covid-19 adalah obat?

Satuan Tugas Penanganan COVID-19. (2022). Situasi covid-19 di indonesia .

Sayampanathan, A. A., Heng, C. S., Pin, P. H., Pang, J., Leong, T. Y., & Lee, V. J. (2021). Infectivity of asymptomatic versus symptomatic COVID-19. The Lancet, Vol. 397. https://doi.org/10.1016/S0140-6736(20)32651-9

Tosepu, R., Gunawan, J., Effendy, D. S., Ahmad, L. O. A. I., Lestari, H., Bahar, H., & Asfian, P. (2020). Correlation between weather and covid-19 pandemic in jakarta, indonesia. Science of The Total Environment, 725, 138436. https://doi.org/10.1016/j.scitotenv.2020.138436

World Health Organization. (2021). WHO validates sinovac covid-19 vaccine for emergency use and issues interim policy recommendations. World Health Organization.

World Health Organization. (2022). Weekly epidemiological update on covid-19.

Yang, J., Zheng, Y., Gou, X., Pu, K., Chen, Z., Guo, Q., … Zhou, Y. (2020). Prevalence of comorbidities and its effects in patients infected with sars-cov-2: A systematic review and meta-analysis. International Journal of Infectious Diseases, 94, 91–95. https://doi.org/10.1016/j.ijid.2020.03.017




DOI: http://dx.doi.org/10.24042/djm.v7i3.24397

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.