Unlocking market insight: Forecasting PT Bank Central Asia Tbk stock prices with ARIMA-GARCH analysis

Hana Lifa Abidha , Atina Ahdika

Abstract


Stock prices are very important financial assets and accurate forecasting of stock price movements is of great value in making investment decisions. This research methodology begins with the analysis of historical data of BBCA stock prices. The ARIMA (Autoregressive Integrated Moving Average) model is used to capture trends and patterns of stock price fluctuations that occur over time. This model is then improved with the application of the GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model to measure changes in volatility and heteroskedasticity in stock prices. The data used in this study includes the daily share price of BBCA in the period 1 October 2021 - 30 October 2023, obtained from reliable data sources. This research aims to develop an effective forecasting model for the stock price of PT Bank Central Asia Tbk (BBCA) using a combination of ARIMA and GARCH models. The results of the study show that the closing price of shares of PT Bank Central Asia Tbk (BBCA) contains elements of heteroskedasticity. The best model obtained is ARIMA (0,1,1)-GARCH (6,0). The MAPE value obtained is 0.9610548.


Keywords


ARIMA; Forecasting; GARCH.

Full Text:

PDF

References


Aswi, & Sukarna. (2006). Analisis deret waktu: teori dan aplikasi. Makassar: Andira Publisher.

Azmi, U., & Syaifudin, W. H. (2020). Peramalan harga komoditas dengan menggunakan metode Arima-Garch. Jurnal Varian, 3, 113-124. https://doi.org/https://doi.org/10.30812/varian.v3i2.653

Blanchard, O. (2017). Macroeconomics. New Jersey: Pearson Prentice Hall.

Deviana, S., Nusyirwan, Azis, D., & Ferdias, P. (2021). Analisis model autoregressive integrated moving average data deret waktu dengan metode momen sebagai estimasi parameter. Jurnal Siger Matematika, 02, 57-67. https://doi.org/http://dx.doi.org/10.23960%2Fjsm.v2i2.2812

Faydian, P., Hasana, A. E., Irfan, M., & Taqiyyudin, T. A. (2021). Penerapan model ARCH/GARCH untuk memprediksi harga saham perusahaan tokai carbon. Jurnal Sains Matematika dan Statistika, 7, No 2, 50-61. https://doi.org/https://dx.doi.org/10.24014/jsms.v7i2.13138

Febriyanto. (2016). Analisis perubahan nilai Indonesia Crude Price (ICP) dan pengaruhnya terhadap indeks harga saham gabungan (IHSG) periode pengamatan sebelum pemberlakuan MEA. DERIVATIF, 10, No.1, 10-25.

Fitriyani, F., A, S. F., R, M. I., & T, T. A. (2021). Peramalan Indeks harga saham PT Verena Multi Finance Tbk dengan metode pemodelan ARIMA dan ARCH-GARCH. J Statistika, 14, No 1, 11-23. https://doi.org/https://doi.org/10.36456/jstat.vol14.no1.a3774

Haque, M. I., & Shaik, A. R. (2021). Predicting crude oil prices during a pandemic: A comparison of arima and garch models. Montenegrin Journal of Economics, 17, No. 1, 197-207. https://doi.org/10.14254/1800-5845/2021.17-1.15

Kabasarang, D., Setiawan, A., & Susanto, B. (2012). Uji normalitas dengan menggunakan statistika Jarque-Bera. Seminar Nasional Pendidikan Matematika Ahmad Dahlan (SENDIKMAD).

Makridakis. (1988). Metode dan aplikasi peramalan jilid 1, edisi ke 2, terjemahaan Untung Sus Andriyanto. Jakarta: Erlangga.

Milniadi , A. D., & Adiwijaya, N. O. (2023). Analisis perbandingan model ARIMA dan LSTM dalam peramalan harga penutupan saham (studi kasus: 6 kriteria kategori saham menurut Peter Lynch). Sibatik Journal, 2, No. 6, 1683-1692. https://doi.org/https://doi.org/10.54443/sibatik.v2i6.798

Mustapa, H. F., & Ismail, M. T. (2019). Modelling and forecasting S&P 500 stock prices using hybrid Arima-Garch Model. Journal of Physics : Conference Series, 1366. https://doi.org/10.1088/1742-6596/1366/1/012130

Rosadi, D. (2011). Analisis ekonometrika & runtun waktu terapan dengan R. Yogyakarta: Andi.

Sabbat, E. (2020, Juli). Kenapa saham BBCA naik terus? (Saham Gain) Retrieved Januari 03, 2024, from https://www.sahamgain.com/2020/07/kenapasaham-bca-naik-terus.html

Utami, A. P., Supriyanto, & Istikaanah, N. (2023). Model peramalan harga saham menggunakan metode ARIMA-GARCH (studi kasus saham PT. Unilever Indonesia). Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP), 15, No. 1, 1-12. https://doi.org/https://doi.org/10.20884/1.jmp.2023.15.1.8658

Wei, W. (2006). Time series analysis:univariate and multivariate methods. Boston: Pearson Addison Wesley.

Wijoyo, N. A. (2016). Peramalan nilai tukar rupiah terhadap USD dengan menggunakan model GARCH. Kajian Ekonomi & Keuangan, 20, N0.2 , 170-189. https://doi.org/https://doi.org/10.31685/kek.v20i2.187

Wulandari, S. (2020). Metode vector autoregressive (VAR) pada peramalan jumlah kedatangan wisatawan mancanegara di Bali dan Jakarta. MEDIAN Vol. 3, No. 01, 21-28.

Yolanda, N., Nainggolan, N., & Komalig, H. (2017). Penerapan model ARIMA-GARCH untuk memprediksi harga saham Bank BRI. Jurnal Mipa Unsrat Online, 6, N0. 2, 92-96. https://doi.org/https://doi.org/10.35799/jm.6.2.2017.17817

Zolfaghari, M., & Gholami, S. (2021). A hybrid approach of adaptive wavelet transform, long short-term memory and ARIMA_GARCH family models for the index prediction. Expert System With Applications, 182, 1-28. https://doi.org/https://orcid.org/0000-0002-4613-6419




DOI: http://dx.doi.org/10.24042/djm.v7i2.22150

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.