Backpropagation algorithm modeling to predict the number of foreign tourist visits to indonesia via air gates

Febriani Astuti, Rokhana Dwi Bekti, Aurora Arianita Br Keliat, Theodorina Inya Sebo

Abstract


The tourism sector is a supporting sector for the Indonesian economy. One of the important actors in Indonesian tourism is foreign tourists. After the COVID-19 pandemic, the trend of foreign tourist visits to Indonesia has increased. The Central Statistics Agency (BPS) recorded that foreign tourist visits to Indonesia during 2022 reached 5.47 million. This figure has increased by 251.28% compared to the 2021 period. According to BPS, one of the gates most accessed by foreign tourists is the air gate. Based on these conditions, this research aims to predict the number of foreign tourists coming to Indonesia via air gates. The method used to predict is the backpropagation algorithm. The use of the backpropagation algorithm is able to provide prediction results with the highest level of accuracy of 91.40% for tourist visits at Ngurah Rai Airport, Bali. Furthermore, an MSE value of 0.056 was obtained. Thus, predictions using the backpropagation algorithm can be said to be good and quite accurate and can be used for prediction calculations in the following year.


Keywords


Air Gate; Artificial Neural Networks; Backpropagation; Predictions; Foreign Tourists.

Full Text:

PDF

References


Badan Pusat Statistik Indonesia. (2022). International visitor arrivals statistics 2022. Retrieved from www.bps.go.id

Budiharjo, Soemartono, T., Windarto, A. P., & Herawan, T. (2018). Predicting school participation in indonesia using back-propagation algorithm model. International Journal of Control and Automation, 11(11), 57–68.

Ilyas, I., Marisa, F., & Purnomo, D. (2018). Implementasi metode trend moment (peramalan) mahasiswa baru universitas widyagama malang. JOINTECS (Journal of Information Technology and Computer Science), 3(2). https://doi.org/10.31328/jointecs.v3i2.785

Karmiani, D., Kazi, R., Nambisan, A., Shah, A., & Kamble, V. (2019). Comparison of predictive algorithms: Backpropagation svm, lstm, and kalman filter for stock market. Proceedings - 2019 Amity International Conference on Artificial Intelligence, AICAI 2019. https://doi.org/10.1109/AICAI.2019.8701258

Khusniyah, T. W., & Sutikno, S. (2016). Prediksi nilai tukar petani menggunakan jaringan syaraf tiruan backpropagation. Scientific Journal of Informatics, 3(1), 11–18. https://doi.org/10.15294/sji.v3i1.4970

Koesriputranto, A. (2015). Prediction of stock price in indonesia using hybrid method principal component analysis and support vector machine (pca-svm). Institut Teknologi Sepuluh Nopember, Surabaya.

Kuninti, S., & Rooban, S. (2021). Backpropagation algorithm and its hardware implementations: A review. Journal of Physics: Conference Series, 1804(1). https://doi.org/10.1088/1742-6596/1804/1/012169

Lestari, K. T. N., Albar, M. A., & Afwani, R. (2019). Penerapan metode backpropagation dalam memprediksi jumlah kunjungan wisatawan ke provinsi nusa tenggara barat (ntb). Journal of Computer Science and Informatics Engineering (J-Cosine), 3(1). https://doi.org/10.29303/jcosine.v3i1.236

OECD. (2022). OECD tourism trends and policies 2022. OECD. https://doi.org/10.1787/a8dd3019-en

Putri, O. A., Poningsih, P., & Tambunan, H. S. (2021). Prediksi kunjungan wisatawan mancanegara ke indonesia menggunakan jaringan saraf tiruan dengan algoritma backpropagation. In Januari (Vol. 2).

Salimu, S. A., & Yunus, Y. (2020). Prediksi tingkat kedatangan wisatawan asing menggunakan metode backpropagation (Studi kasus: Kepulauan mentawai). Jurnal Informatika Ekonomi Bisnis, 98–103. https://doi.org/10.37034/infeb.v2i4.50

Sari, Hj. Y. (2016). Optimasi conjugate gradient pada algoritma backpropagation neural network untuk prediksi kurs time series. Jurnal GEMA AKTUALITA, 05(01).

Setti, S., Wanto, A., Syafiq, M., Andriano, A., & Sihotang, B. K. (2019). Analysis of backpropagation algorithms in predicting world internet users. Journal of Physics: Conference Series, 1255(1). https://doi.org/10.1088/1742-6596/1255/1/012018

Siregar, S. P., & Wanto, A. (2017). Analysis accuracy of artificial neural network using backpropagation algorithm in predicting process (forecasting). IJISTECH (International Journal Of Information System & Technology), 1(1). https://doi.org/10.30645/ijistech.v1i1.4

Winanjaya, R., & Okprana, H. (2023). Optimalisasi jst dalam memprediksi kunjungan wisatawan mancanegara untuk perencanaan dan pengembangan pariwisata yang efektif. Jurnal Media Informatika Budidarma, 7(4), 1816–1828.

Yanto, B., Hendri, Almadison, Hutagaol, R., & Rahman, R. (2022). Analisis optimasi algoritma backpropagation momentum dalam memprediksi jenis tingkat kejahatan di kecamatan tambusai utara. JOURNAL OF ICT APLICATIONS AND SYSTEM, 1(1). https://doi.org/10.56313/jictas.v1i1.165

Yanto, M., Mandala, E. P. W., Putri, D. E., & Yuhandri, Y. (2018). Peramalan penjualan pada toko retail menggunakan algoritma backpropagation neural network. JURNAL MEDIA INFORMATIKA BUDIDARMA, 2(3). https://doi.org/10.30865/mib.v2i3.811




DOI: http://dx.doi.org/10.24042/djm.v6i3.19751

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.