Fast Forward Method On Landau-Majorana-Zener System

Albet Karuniawan , Iwan Setiawan , Dedy Hamdani

Abstract


Quantum computers have data in the form of quantum bits (qubits), which are 0 and 1 simultaneously. This 0 and 1 state is the electron spin state on the quantum computer, namely spin up and spin down. Qubits are very sensitive to environmental disturbances, so it is necessary to accelerate the adiabatic dynamics so that the system's coherence is not disturbed by environmental interactions. These spin dynamics can be accelerated using the fast forward method, which uses an additional phase to drive the spin adiabatically. The adiabatic state is a state where the dynamics of a system have the same characteristics as the initial state after the dynamics take place. This research was conducted by qualitatively reviewing physical theory and conducting literature studies on previous research on the fast-forward method and the Landau-Majorana-Zener system. The results of this study obtained wave function solutions, regularization terms, and additional Hamiltonians in the Landau-Majorana-Zener system to accelerate adiabatic spin dynamics so that spin dynamics on quantum computers are not disturbed by the environment. After adding additional Hamiltonian adiabatic dynamics in the Landau-Majorana Zener system can be maintained but requires considerable energy. The magnetic field needed to create the same graph as the wave function graph before adding Hamiltonian, B0 = 100 Tesla. The energy required to accelerate the adiabatic spin dynamics is large, so the cost is also quite large. Therefore, efforts are needed to minimize the energy required to accelerate the adiabatic spin dynamics.

Keywords


adiabatic dynamics; fast forward; landau-majorana-zener; quantum computers; qubit.

Full Text:

PDF

References


Afidah, Z., Supriadi, B., Rahmawati, N., Febrianty, W., Mahmudyah, N. N., & Al Amri, H. (2024). Uncertainty of Helium Ion Momentum (He+) by Using the Heisenberg Uncertainty Approach on Quantum Numbers n ≤ 3. Jurnal Pendidikan Fisika dan Keilmuan (JPFK), 10(1), 81–91. https://doi.org/10.25273/jpfk.v10i1.20323

Ainayah, N., Setiawan, I., & Hamdani, D. (2023). Methods To Accelerate Equilibrium In Overdamped Brownian Motion. Jurnal Pendidikan Fisika dan Keilmuan (JPFK), 8(2), 212–224. https://doi.org/10.25273/jpfk.v8i2.13626

Aszhar, J., Setiawan, I., & Medriati, R. (2024). Universitas Papua Method for Accelerating Equilibrium in Perfectly Damped Brownian Motion with Harmonic Potential Metode untuk Mempercepat Kesetimbangan pada Gerak Brown. Kasuari: Physics Education Journal, 7(1), 31–43. https://doi.org/https://doi.org/10.37891/kpej.v7i1.485

Benggadinda, A., & Setiawan, I. (2021). Metoda Fast Forward Untuk Mempercepat Dinamika Kuantum Adiabatik Pada Spin Tunggal. Jurnal Sains dan Teknologi (JST), 10(2), 274–280. https://doi.org/10.23887/jstundiksha.v10i2.39876

Berry, M. V. (2009). Transitionless quantum driving. Journal of Physics A: Mathematical and Theoretical, 42(36). https://doi.org/10.1088/1751-8113/42/36/365303

Dari, A., Setiawan, I., & Purwanto, A. (2024). Phase Regularization and Additional Potential in Quantum Systems at the Potential Barrier to Maintain Adiabatic Condition. Jurnal Penelitian Pendidikan IPA, 10(2), 859–869. https://doi.org/10.29303/jppipa.v10i2.6393

Dewi, R., & Lubis, M. R. (2021). Analisis Metode Quantum untuk Optimalisasi Algoritma Best First Search. Jurnal Edukasi dan Penelitian Informatika (JEPIN), 7(2), 300. https://doi.org/10.26418/jp.v7i2.48557

Elisa, N., Setiawan, I., & Hamdani, D. (2023). Energi Penggerak untuk Mempercepat Kesetimbangan Gerak Brown Teredam Sebagian (Underdamped). Jurnal Inovasi dan Pembelajaran Fisika, 10(1), 21–33. https://doi.org/10.36706/jipf.v10i1.19240

Griffiths, D. J. (2005). Introduction to Quantum Mechanics. Sidney: Pearson Education International.

Guéry-Odelin, D., Ruschhaupt, A., Kiely, A., Torrontegui, E., Martínez-Garaot, S., & Muga, J. G. (2019). Shortcuts to adiabaticity: Concepts, methods, and applications. Reviews of Modern Physics, 91(4), 1–54. https://doi.org/10.1103/RevModPhys.91.045001

Hegade, N. N., Paul, K., Ding, Y., Sanz, M., Albarrán-Arriagada, F., Solano, E., & Chen, X. (2021). Shortcuts to Adiabaticity in Digitized Adiabatic Quantum Computing. Physical Review Applied, 15(2), 1–11. https://doi.org/10.1103/PhysRevApplied.15.024038

Hutagalung, M., Setiawan, I., & Hamdani, D. (2023). Kajian Literatur Fase Adiabatik untuk mempercepat Dinamika Kuantum Adiabatik pada Osilator Harmonik. Indonesian Journal Of Applied Physics, 13(1), 106–116. https://doi.org/10.13057/ijap.v12i2.65252

Ivakhnenko, O. V., Shevchenko, S. N., & Nori, F. (2022). Nonadiabatic Landau-Zener-Stückelberg-Majorana transitions, dynamics, and interference. Physics Reports, 5(2), 1–89. https://doi.org/10.1016/j.physrep.2022.10.002

Kharismawati, I. (2020). Penggunaan Teori Perturbasi untuk Menentukan Tingkat Energi Partikel pada Kotak Potensial Tiga Dimensi. Jurnal Pendidikan Fisika dan Keilmuan (JPFK), 6(2), 65–74. https://doi.org/10.25273/jpfk.v6i2.7237

Masuda, S., Koenig, J., & Steele, G. A. (2022). Acceleration and deceleration of quantum dynamics based on inter-trajectory travel with fast-forward scaling theory. Scientific Reports, 12(1), 1–12. https://doi.org/10.1038/s41598-022-14973-6

Masuda, S., & Nakamura, K. (2022). Fast-forward scaling theory. The Royal Society Publishing, 10(1), 1–15. https://doi.org/https://doi.org/10.1098/rsta.2021.0278

Nakamura, K., Matrasulov, J., & Izumida, Y. (2020). Fast-forward approach to stochastic heat engine. Physical Review E, 102(1), 1–12. https://doi.org/10.1103/PhysRevE.102.012129

Natasha, D., Supriadi, B., Unwaru, K. C. A., Irmawati, R., Nagifea, F. Y., Herlia, N. F., & Angelita, T. (2024). Spectrum of kinetic energy of electrons of Helium ions in functions Radial Schrodinger waves on quantum numbers (n ≤ 3). Jurnal Pendidikan Fisika dan Keilmuan (JPFK), 10(1), 47–55. https://doi.org/10.25273/jpfk.v10i1.19715

Ningrum, T. W., Supriadi, B., Mashitoh, N. N., Silvira, L., & Anggraeni, N. P. (2023). The Wave Function Of The Tritium Atom In The Representation Of Momentum Space Using The Schrodinger Equation On Quantum Numbers n ≤ 3. Jurnal Pendidikan Fisika dan Keilmuan (JPFK), 9(1), 23–30. https://doi.org/10.25273/jpfk.v9i1.16478

Pingak, R. K., Kolmate, R., & Bernandus, B. (2019). A Simple Matrix Approach to Determination of the Helium Atom Energies. Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 9(1), 10. https://doi.org/10.26740/jpfa.v9n1.p10-21

Rohayati, S., Setiawan, I., & Risdianto, E. (2024). Regularization Phase And Auxiliary Potential To Maintain Adiabatic Quantum Dynamics At Delta Function Potential. Jurnal Pendidikan Fisika dan Keilmuan (JPFK), 9(2), 87–113. https://doi.org/10.25273/jpfk.v9i2.18405

Setiawan, I. (2019). Dinamika Spin Kuantum Adiabatik Dipercepat Pada Model Landau-Zener Dan Model Ising. Jurnal Kumparan Fisika, 2(1), 57–64. https://doi.org/10.33369/jkf.2.1.57-64

Setiawan, I., Ekawita, R., Sugihakim, R., & Gunara, B. E. (2023). Fast-forward adiabatic quantum dynamics of XY spin model on three spin system. Physics Script, 98(2), 1–13. https://doi.org/10.1088/1402-4896/acb2fe

Setiawan, I., Gunara, B. E., & Nakamura, K. (2019). Fast forward of Adiabatic Spin Dynamics : An application to Quantum Annealing Model in Triangle Spin Systems. Journal of Physics: Conference Series, 1245(1), 1–9. https://doi.org/10.1088/1742-6596/1245/1/012077

Setiawan, I., Sugihakim, R., Gunara, B. E., Masuda, S., & Nakamura, K. (2023). Fast-forward generation of non-equilibrium steady states of a charged particle under the magnetic field. Progress of Theoretical and Experimental Physics, 2023(6), 1–12. https://doi.org/10.1093/ptep/ptad067

Sugihakim, R., Setiawan, I., & Gunara, B. E. (2021). Fast-Forward of Local-Phased-Regularized Spinor in Massless 2+1-Dimensions Adiabatic Dirac Dynamics. Journal of Physics: Conference Series, 1951(1), 1–5. https://doi.org/10.1088/1742-6596/1951/1/012068

Supriadi, B., Cahya, N., Kusumaningtyas, Ulfah, A. Z., Sani1, S. A., & Wulandari, R. D. (2023). Probability of Electron Ion 3Li^2+ In Momentum Space At n ≤ 3. Jurnal Penelitian Pendidikan IPA, 9(10), 9026–9031. https://doi.org/10.29303/jppipa.v9i10.4288

Supriadi, B., Mardhiana, H., Kristiawan, W. I., Kamalia, D., & Sari, I. K. (2023). Expected Value of Helium Ion Electron Momentum in Momentum Space with Primary Quantum Numbers n≤3. Jurnal Penelitian Pendidikan IPA, 9(10), 8467–8472. https://doi.org/10.29303/jppipa.v9i10.3861

Syafitri, D., Setiawan, I., Studi, P., Fisika, P., & Bengkulu, U. (2023). Analisis Fase Tambahan , Potensial Tambahan , dan Rapat Arus Adiabatik Sistem Kuantum Dengan Potensial Tangga. Navigation Physics : Journal of Physics Education, 5(2), 66–76. https://doi.org/https://doi.org/10.30998/npjpe.v5i2.2367

Wang, X., Liu, H. D., & Fu, L. B. (2023). Nonlinear non-Hermitian Landau-Zener-Stückelberg-Majorana interferometry. New Journal of Physics, 25(4), 1–18. https://doi.org/10.1088/1367-2630/accca3

Yuan, A., Leditto, C. M. G., & Hutagalung, R. T. R. (2019). Keterbelitan Kuantum (Quantum Entanglement). Jurnal Sains Dan Komputer, 6(1), 49–60.




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v13i2.24576

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.