Peer Instruction Using PhET Integrated with Inquiry-based Learning in Kinematics Physics Learning

Ogi Danika Pranata

Abstract


This study investigates the impact of integrating peer instruction with PhET simulations and inquiry-based learning on physics education. Given the constraints of having only one class of 40 students, a one-group quantitative design was employed, complemented by a qualitative approach to create a mixed-method design. Quantitative analysis of pre-test and post-test results was performed using N-Gain, effect size, and paired samples t-test. Furthermore, qualitative analysis provided insights into students' learning experiences. The average N-Gain score initially showed a low increase (0.26), but excluding cases with negative gains revealed a moderate increase (0.38). The paired samples t-test confirmed a significant improvement in post-test scores compared to pre-test scores, with a large effect size (), demonstrating the effectiveness of the intervention. However, further analysis is needed to explore the distribution of student answers and underlying misconceptions. Some misconceptions were corrected, such as those related to distance, displacement, and velocity equations. However, kinematics graphs and vertical motion persisted. This finding underscores the urgency of refining teaching methods to address these persistent issues. The findings highlight the potential of this integrated approach to improve physics instruction and suggest that educators can use these insights to better support students' understanding of kinematics and graphical analysis.

Keywords


inquiry-based learning; kinematics; peer-instruction; phet; physics learning.

Full Text:

PDF

References


Bao, L., & Koenig, K. (2019). Physics education research for 21st century learning. Disciplinary and Interdisciplinary Science Education Research, 1(1), 1–12. https://doi.org/10.1186/s43031-019-0007-8

Beichner, R. J. (1994). Testing student interpretation of kinematics graphs. American Journal of Physics, 62(8), 750–762. https://doi.org/10.1119/1.17449

Bektasli, B., & White, A. L. (2012). The relationships between logical thinking, gender, and kinematics graph interpretation skills. Egitim Arastirmalari - Eurasian Journal of Educational Research, 48(48), 1–19.

Berryhill, E., Herrington, D., & Oliver, K. (2016). Kinematics Card Sort Activity: Insight into Students’ Thinking. The Physics Teacher, 54(9), 541–544. https://doi.org/10.1119/1.4967894

Bollen, L., Cock, M. De, Zuza, K., Guisasola, J., & Kampen, P. Van. (2016). Generalizing a categorization of students ’ interpretations of linear kinematics graphs. 010108, 1–10. https://doi.org/10.1103/PhysRevPhysEducRes.12.010108

Bunterm, T., Lee, K., Ng Lan Kong, J., Srikoon, S., Vangpoomyai, P., Rattanavongsa, J., & Rachahoon, G. (2014). Do Different Levels of Inquiry Lead to Different Learning Outcomes? A comparison between guided and structured inquiry. International Journal of Science Education, 36(12), 1937–1959. https://doi.org/10.1080/09500693.2014.886347

Cahyani, V. D., & Pranata, O. D. (2023). Studi Aktivitas Belajar Sains Siswa di SMA Negeri 7 Kerinci. Lensa (Lentera Sains): Jurnal Pendidikan IPA, 13(2), 137–148. https://doi.org/10.24929/lensa.v13i2.317

Chamberlain, J. M., Lancaster, K., Parson, R., & Perkins, K. K. (2014). How guidance affects student engagement with an interactive simulation. Chemistry Education Research and Practice, 15(4), 628–638. https://doi.org/10.1039/c4rp00009a

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Science. Second Edition. Lawrence Erlbaum Associates.

Cohen, L., Manion, L., & Morrison, K. (2018). Research Methods in Education (Eighth edi). Routledge.

Creswell, J. W., & Clark, V. L. P. (2017). Designing and Conducting Mixed Methods Research (Third Edit). Sage.

Crouch, C. H., & Mazur, E. (2001). Peer Instruction: Ten years of experience and results. American Journal of Physics, 69(9), 970–977. https://doi.org/10.1119/1.1374249

Fagen, A. P., Crouch, C. H., & Mazur, E. (2002). Peer Instruction: Results from a Range of Classrooms. The Physics Teacher, 40(4), 206–209. https://doi.org/10.1119/1.1474140

Guidugli, S., Gauna, C. F., & Benegas, J. (2005). Graphical Representations of Kinematical Concepts: A Comparison of Teaching Strategies. The Physics Teacher, 43(6), 334–337. https://doi.org/10.1119/1.2033514

Hake, R. R. (1998). Interactive-Engagement vs. Traditional Methods: A Six-Thousand-Student Survey of Mechanics Test Data for Introductory Physics Courses. American Journal of Physics, 66(64), 1–26.

Hale, P. L. (2000). Kinematics and Graphs : Students ’ Difficulties and CBLs. The Mathematics Teacher, 93(5), 414–417.

Haleem, A., Javaid, M., Qadri, M. A., & Suman, R. (2022). Understanding the role of digital technologies in education: A review. Sustainable Operations and Computers, 3(1), 275-258. https://doi.org/10.1016/j.susoc.2022.05.004

Hasan, S., Bagayoko, D., & Kelley, E. L. (1999). Misconceptions and the certainty of response index (CRI). Physics Education, 34(5), 294–299. https://doi.org/10.1088/0031-9120/34/5/304

Heydari, H., Zarei, E., Zainalipour, H., & Abbas, B. (2013). Survey the Effect of Cooperative Learning on Confidence. 3(4), 360–363.

Ibrahim, B., & Rebello, N. S. (2012). Representational task formats and problem solving strategies in kinematics and work. Physical Review Special Topics - Physics Education Research, 8(1), 1–19. https://doi.org/10.1103/PhysRevSTPER.8.010126

Jewett, J. W. (2008). Energy and the Confused Student I: Work. The Physics Teacher, 46(1), 38–43. https://doi.org/10.1119/1.2823999

Jufriadi, A., Kusairi, S., & Sutopo, S. (2021). Exploration of student’s understanding of distance and displacement concept. Journal of Physics: Conference Series, 1869(1). https://doi.org/10.1088/1742-6596/1869/1/012195

Jugueta, E. A. D., Go, C. K. C., & Indias, J. M. M. (2012). Free fall misconceptions: A comparison between science and non-science university majors. Am. J. Phys. Educ, 6, 145. http://www.lajpe.org

Knight, J. K., & Brame, C. J. (2018). Peer instruction. CBE Life Sciences Education, 17(2), 1–4. https://doi.org/10.1187/cbe.18-02-0025

Lasry, N., Mazur, E., & Watkins, J. (2008). Peer instruction: From Harvard to the two-year college. American Journal of Physics, 76(11), 1066–1069. https://doi.org/10.1119/1.2978182

Laverty, J., & Kortemeyer, G. (2012). Function plot response: A scalable system for teaching kinematics graphs. American Journal of Physics, 80(8), 724–733. https://doi.org/10.1119/1.4719112

Lemmer, M. (2013). Nature, Cause and Effect of Students’ Intuitive Conceptions Regarding Changes in Velocity. International Journal of Science Education, 35(2), 239–261. https://doi.org/10.1080/09500693.2011.647110

Mazur, E. (1997). Peer Instruction: A user’s manual. Prentice Hall.

Mazur, E. (2014). Peer Instruction: A User’s Manual (Person New). Pearson Education.

McDermott, L. C., Rosenquist, M. L., & van Zee, E. H. (1987). Student difficulties in connecting graphs and physics: Examples from kinematics. American Journal of Physics, 55(6), 503–513. https://doi.org/10.1119/1.15104

Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barret, K. C. (2004). SPSS for Introductory Statistics. Use and Interpretation. Lawrence Erlbaum Associates, Inc. All.

Motlhabane, A. (2016). Learner’s alternative and misconceptions in physics: A phenomenographic study. Journal of Baltic Science Education, 15(4), 424–440. https://doi.org/10.33225/jbse/16.15.424

Nieminen, P., Savinainen, A., & Viiri, J. (2012). Relations between representational consistency, conceptual understanding of the force concept, and scientific reasoning. Physical Review Special Topics - Physics Education Research, 8(1), 1–10. https://doi.org/10.1103/PhysRevSTPER.8.010123

Pranata, O. D. (2023). Physics Education Technology (PhET) as Confirmatory Tools in Learning Physics. Jurnal Riset Fisika Edukasi Dan Sains, 10(1), 29–35. https://doi.org/10.22202/jrfes.2023.v10i1.6815

Pranata, O. D., Sastria, E., Ferry, D., & Zebua, D. R. Y. (2023). Analysis of Students’ Emotional Intelligence and Their Relationship with Academic Achievement in Science. Proceedings of the International Conference on Social Science and Education, ICoeSSE, 395–410. https://doi.org/10.2991/978-2-38476-142-5

Pranata, O. D., & Seprianto, S. (2023). Pemahaman Konsep Siswa Melalui Skema Blended learning Menggunakan Lembar Kerja Berbasis Simulasi. Karst : Jurnal Pendidikan Fisika Dan Terapannya, 6(1), 8–17. https://doi.org/https://doi.org/10.46918/karst.v6i1.1724

Pranata, O. D., Yuliati, L., & Wartono. (2017). Concept Acquisition of Rotational Dynamics by Interactive Demonstration and Free-Body Diagram. Journal of Education and Learning (EduLearn), 11(3), 291–298. https://doi.org/10.11591/edulearn.v11i3.6410

Rosenquist, M. L., & McDermott, L. C. (1987). A conceptual approach to teaching kinematics. American Journal of Physics, 55(5), 407–415. https://doi.org/10.1119/1.15122

Soeharto, S. (2021). Development of A Diagnostic Assessment Test to Evaluate ScienceMisconceptions in Terms of School Grades: A Rasch MeasurementApproach. Journal of Turkish Science Education, 18(3), 351–370. https://doi.org/ 10.36681/tused.2021.78

Sokoloff, D. R., Thornton, R. K., & Laws, P. W. (2011). RealTime Physics Active Learning Laboratories Module 1 Mechanics (Vol. 15). http://books.google.com/books?hl=en&lr=&id=GjkvDKvZVrYC&pgis=1

Sokolowski, A. (2017). Graphs in kinematics - A need for adherence to principles of algebraic functions. Physics Education, 52(6). https://doi.org/10.1088/1361-6552/aa873d

Sutopo, Hidayah, N., Wisodo, H., & Haryoto, D. (2020). Improving students’ understanding of kinematics concepts through multi-representational learning. AIP Conference Proceedings, 2215(April). https://doi.org/10.1063/5.0004063

Sutopo, & Waldrip, B. (2013). Impact of a Representational Approach on Students ’. International Journal of Science and Mathematics Education, 12(November 2012), 741–766. https://link-springer-com.ezproxy.utm.my/content/pdf/10.1007%2Fs10763-013-9431-y.pdf

Testoni, L. A., & Brockington, G. (2016). The use of smartphones to teach kinematics: An inexpensive activity. Physics Education, 51(6). https://doi.org/10.1088/0031-9120/51/6/063008

Wee, L. K., Tan, K. K., Leong, T. K., & Tan, C. (2015). Using Tracker to understand “toss up” and free fall motion: A case study. Physics Education, 50(4), 436–442. https://doi.org/10.1088/0031-9120/50/4/436

Wemyss, T., & Van Kampen, P. (2013). Categorization of first-year university students’ interpretations of numerical linear distance-time graphs. Physical Review Special Topics - Physics Education Research, 9(1), 1–17. https://doi.org/10.1103/PhysRevSTPER.9.010107

Wenning, C. J. (2011). The Levels of Inquiry Model of Science Teaching. J. Phys. Tchr. Educ. Online, 6(2), 9–16.

Wieman, C. E., Adams, W. K., Loeblein, P., & Perkins, K. K. (2010). Teaching Physics Using PhET Simulations. The Physics Teacher, 48(4), 225–227. https://doi.org/10.1119/1.3361987

Wieman, C. E., & Perkins, K. K. (2006). A powerful tool for teaching science. Nature Physics, 2(5), 290–292. https://doi.org/10.1038/nphys283

Winter, J. de, & Hardman, M. (2020). Teaching Secondary Physics. In J. de Winter & M. Hardman (Eds.), Teaching Secondary Science (3rd ed.). https://books.google.com.my/books?id=ZSoryQEACAAJ




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v13i2.19299

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.