Radiation Dose Evaluation for Radiotherapy Workers at Unand Hospital Using Four-Element Thermoluminescence Dosimetry

Ramacos Fardela, Dian Milvita, Latifah Aulia Rasyada, Mawanda Almuhayar, Fiqi Diyona, Almahdi Mousa

Abstract


Radiotherapy is a non-surgery therapy that employs ionizing radiation like X-ray or even radiation to cure cancer as a curative activity. Radiation dose rate analysis is required for the person who worked on radiotherapy to strengthen safety precautions for radiation protection, notably in oncology radiation. The research attempted to disclose time trends and radiation dose rate exposure variations among personnel in radiotherapy installation. Radiation dose examination utilizing four-elements TLD received from 16 respondents grouped into six groups (radiation oncologist, medical physicist, radiotherapist, electromedicine, nurse, and sculptor). The number of occupancy exposures rose 55.5% from 2018 to 2022. The most significant annual radiation dose rate for 900 patient workloads attained by medical physicists was 0.996 mSv. In addition, electronics receive the lowest annual radiation dose at Unand Hospital. Annual effective dose exposure by radiation is still safe, below national or international regulations. However, a protective improvement process is vital to limit radiation interaction, particularly for medical physicists, who are the most vulnerable to radiation exposure.

Keywords


Dose Limit, Radiotherapy, Radiation Protection, Occupational Exposure

Full Text:

PDF

References


Alashban, Y. (2021). An assessment of Occupationalal effective dose in several medical departments in Saudi Arabia. Journal of King Saud University - Science,33(3),101402. https://doi.org/10.1016/j.jksus.2021.101402

Bernier, J., Hall, E. J., & Giaccia, A. (2004). Radiation oncology: A century of achievements. Nature Reviews Cancer,4(9),737–747. https://doi.org/10.1038/nrc1451

Bilalodin, B., Haryadi, A., Sardjono, Y., & Kasesaz, Y. (2022). Investigation on electron contamination of LINAC at different operating voltages using particle heavy ion transport code system (PHITS). Jurnal ilmiah pendidikan fisika Al-Biruni, 11(1), 103-111. https://doi.org/10.24042/jipfalbiruni.v11i1.11929

Calabrese, E., Dhawan, G., Kapoor, R., & Kozumbo, W. (2019). Radiotherapy treatment of human inflammatory diseases and conditions: Optimal dose. Human & Experimental Toxicology, 38(8), 888–898. https://doi.org/10.1177/0960327119846925

Cuaron, J. J., Hirsch, A. E., Medich, D. C., Hirsch, J. A., & Rosenstein, B. S. (2011). Introduction to radiation safety and monitoring. Journal of the American College of Radiology, 8(4), 259–264. https://doi.org/10.1016/j.jacr.2010.08.020

Donya, M., Radford, M., ElGuindy, A., Firmin, D., & Yacoub, M. H. (2014). Radiation in medicine: Origins, risks and aspirations. Global Cardiology Science and Practice, 2014(4), 57. https://doi.org/10.5339/gcsp.2014.57

Elshami, W., Erdemir, R. U., Abuzaid, M. M., Cavli, B., Issa, B., & Tekin, H. O. (2022). Occupationalal radiation dose assessment for nuclear medicine workers in Turkey: A comprehensive investigation. Journal of King Saud University - Science, 34(4), 102005. https://doi.org/10.1016/j.jksus.2022.102005

Fardela, R., Suparta, G. B., Ashari, A., & Triyana, K. (2021). Experimental characterization of dosimeter based on a wireless sensor network for a radiation protection program. International Journal on Advanced Science, Engineering and Information Technology,11(4),1468. https://doi.org/10.18517/ijaseit.11.4.11875

Fauziah, F., & Abdullah, B. (2018). Determining X-Ray effective energy in linear accelerator (LINAC) radiotherapy instrument. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 7(1), 99-104. https://doi.org/10.24042/jipfalbiruni.v7i1.2336

Ghorbani, M., Khajetash, B., Ghatei, N., Mehrpouyan, M., Meigooni, A. S., & Shahraini, R. (2017). Determination of dosimetric parameters for shielded 153Gd source in prostate cancer brachytherapy. Radiology and Oncology,51(1),101–112. https://doi.org/10.1515/raon-2017-0009

Guo, Q. S., Ping, R. U. A. N., Huang, W. X., & Qiu, J. C. (2021). Occupationalal radiation exposure and changes in thyroid hormones in a cohort of Chinese medical radiation workers. Biomedical and Environmental Sciences, 34(4), 282-289.

IAEA. (2014). Radiation protection and safety of radiation sources. International Basic Safety Standards, Safety Standards Series No. GSR Part 3, 1–30.

Khan, M. I., Batool, F., Ali, R., Zahra, Q. ul A., Wang, W., Li, S., Wang, G., Liu, L., Khan, S. U., Mansoor, M., Bilal, M., Ding, W., Kazmi, A., Li, F., & Qiu, B. (2022). Tailoring radiotherapies and nanotechnology for targeted treatment of solid tumors. Coordination Chemistry Reviews, 472,214757. https://doi.org/10.1016/j.ccr.2022.214757

Martin, A., Harbison, S., Beach, K., & Cole, P. (2018). An Introduction to radiation protection. CRC Press. https://doi.org/10.1201/9780429444104

Mazonakis, M., & Damilakis, J. (2021). Out-of-field organ doses and associated risk of cancer development following radiation therapy with photons. Physica Medica, 90(1), 73-82.

Miller, D. L. (2008). Overview Of contemporary interventional fluoroscopy procedures. Health Physics,95(5),638–644. https://doi.org/10.1097/01.HP.0000326341.86359.0b

Miller, D. L., Vañó, E., Bartal, G., Balter, S., Dixon, R., Padovani, R., Schueler, B., Cardella, J. F., & de Baère, T. (2010). Occupationalal radiation protection in interventional radiology: A joint guideline of the cardiovascular and interventional radiology society of europe and the society of interventional radiology. CardioVascular and Interventional Radiology,33(2),230–239. https://doi.org/10.1007/s00270-009-9756-7

Nassef, M. H., & Kinsara, A. A. (2017). Occupationalal radiation dose for medical workers at a university hospital. Journal of Taibah University for Science, 11(6), 1259-1266.

Ondo Meye, P., Loemba Mouandza, S. Y., Dallou, G. B., Omon, Y., Mabika Ndjembidouma, B. C., Chaley, C., & Ben-Bolie, G. H. (2023). Assessment of occupational exposure in medical practice in Gabon during 2013–2020. Radiation Medicine and Protection, 4(2),109–115. https://doi.org/10.1016/j.radmp.2023.03.004

Pereira, G. C., Traughber, M., & Muzic, R. F. (2014). The role of imaging in radiation therapy planning: Past, present, and future. BioMed Research International, 2014, 1–9. https://doi.org/10.1155/2014/231090

Rosenblatt, E., Izewska, J., Anacak, Y., Pynda, Y., Scalliet, P., Boniol, M., & Autier, P. (2013). Radiotherapy capacity in European countries: An analysis of the Directory of Radiotherapy Centres (DIRAC) database. The Lancet Oncology, 14(2),e79–e86. https://doi.org/10.1016/S1470-2045(12)70556-9

Smith, T. A., Kirkpatrick, D. R., Smith, S., Smith, T. K., Pearson, T., Kailasam, A., Herrmann, K. Z., Schubert, J., & Agrawal, D. K. (2017). Radioprotective agents to prevent cellular damage due to ionizing radiation. Journal of Translational Medicine,15(1),232. https://doi.org/10.1186/s12967-017-1338-x

ICRP. (2007). Annals of the ICRP, 37(2–4),i–i. https://doi.org/10.1016/j.icrp.2007.10.001

UNSCEAR. (2008). Report of the United Nations Scientific Committee on the Effects of Atomic Radiation: Fiftysixth Session.

Weizhang, W., Wenyi, Z., Ronglin, C., & Liang'an, Z. (2005). Occupational exposures of Chinese medical radiation workers in 1986–2000. Radiation protection dosimetry, 117(4), 440-443.

Wong, L. P., Lai, L. L., See, M. H., Alias, H., Syed Omar, S. F., Ng, C. G., Ho, G. F., Ong, T. A., Wong, Y. C., Ooi, P. L., Elias, J. M., Hu, Z., & Lin, Y. (2022). Adverse events following immunization and psychological distress among cancer patients/survivors following vaccination against SARS-CoV-2 infection. Frontiers in Psychology, 13(July), 1–11. https://doi.org/10.3389/fpsyg.2022.906067

Wrixon, A. D. (2008). New ICRP recommendations. Journal of radiological protection, 28(2), 161.




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v12i2.18101

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.