Enhanced Ethanol Gas Sensor Performance through Adsorption Energy Analysis of Gd-Doped LaFeO3 with rGO Coating: A Density Functional Theory Study
Abstract
Keywords
Full Text:
PDFReferences
Abed Al- Abbas, S. S., Muhsin, M. K., & Jappor, H. R. (2018). Tunable optical and electronic properties of gallium telluride monolayer for photovoltaic absorbers and ultraviolet detectors. Chemical Physics Letters, 713(September), 46–51. https://doi.org/10.1016/j.cplett.2018.10.020
Atta, N. F., Galal, A., & El-Ads, E. H. (2016). Perovskite Nanomaterials – Synthesis, Characterization, and Applications. Perovskite Materials - Synthesis, Characterisation, Properties, and Applications. https://doi.org/10.5772/61280
Baharum, N. B., Daud Awang, M., Arshad, S., & Abd Gani, S. S. (2020). A Study of Literatures: Status of Alcohol in Cosmetics Products from Shariah Views in Malaysia. KnE Social Sciences, 2020, 379–393. https://doi.org/10.18502/kss.v4i9.7338
Cao, E., Feng, Y., Guo, Z., Wang, H., Song, G., Zhang, Y., Hao, W., Sun, L., & Nie, Z. (2020). Ethanol sensing characteristics of (La,Ba)(Fe,Ti)O3 nanoparticles with impurity phases of BaTiO3 and BaCO3. Journal of Sol-Gel Science and Technology, 96(2), 431–440. https://doi.org/10.1007/s10971-020-05369-x
Cao, E., Wu, A., Wang, H., Zhang, Y., Hao, W., & Sun, L. (2019). Enhanced Ethanol Sensing Performance of Au and Cl Comodified LaFeO3 Nanoparticles. ACS Applied Nano Materials, 2(3), 1541–1551. https://doi.org/10.1021/acsanm.9b00024
Chen, M., Wang, H., Hu, J., Zhang, Y., Li, K., Zhang, D., Zhou, S., Zhang, J., Zhu, Z., & Liu, Q. (2019). Near-Room-Temperature Ethanol Gas Sensor Based on Mesoporous Ag/Zn–LaFeO3 Nanocomposite. Advanced Materials Interfaces, 6(1). https://doi.org/10.1002/admi.201801453
Çolak, H., & Karaköse, E. (2022). Gadolinium(III)-doped ZnO nanorods and gas sensing properties. Materials Science in Semiconductor Processing, 139, 106329. https://doi.org/10.1016/j.mssp.2021.106329
Dua, V., Surwade, S. P., Ammu, S., Agnihotra, S. R., Jain, S., Roberts, K. E., Park, S., Ruoff, R. S., & Manohar, S. K. (2010). All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide. Angewandte Chemie, 122(12), 2200–2203. https://doi.org/10.1002/ange.200905089
Enhessari, M., & Salehabadi, A. (2016). Perovskites-Based Nanomaterials for Chemical Sensors. Progresses in Chemical Sensor, August. https://doi.org/10.5772/62559
Fellah, M. F. (2021). The reduced graphene oxide/WO3: Sensing properties for NO2 gas detection at room temperature. Diamond and Related Materials, 119(2), 108593. https://doi.org/10.1016/j.diamond.2021.108593
Fergus, J. W. (2007). Perovskite oxides for semiconductor-based gas sensors. In Sensors and Actuators, B: Chemical (Vol. 123, Issue 2, pp. 1169–1179). https://doi.org/10.1016/j.snb.2006.10.051
Guo, L., Hao, Y. W., Li, P. L., Song, J. F., Yang, R. Z., Fu, X. Y., Xie, S. Y., Zhao, J., & Zhang, Y. L. (2018). Improved NO2 Gas Sensing Properties of Graphene Oxide Reduced by Two-beam-laser Interference. Scientific Reports, 8(1), 1–7. https://doi.org/10.1038/s41598-018-23091-1
Haryadi, H., Syarif, D. G., & Suhendi, E. (2022). The Effect of Couple Doping Gd and Co on The Physical Characteristics of LaFeO3 Thick Film for Acetone Gas Sensor Application. Jurnal Penelitian Fisika Dan Aplikasinya (JPFA), 12(2), 115–126. https://doi.org/10.26740/jpfa.v12n2.p115-126
Joy, R., Han, Z., Xu, K., Pan, X., Liao, N., & Zhou, H. (2020). DFT investigation of gas sensing characteristics of Au-doped vanadium dioxide. Physics Letters, Section A: General, Atomic and Solid State Physics, 384(32), 2–6. https://doi.org/10.1016/j.physleta.2020.126823
Khen, L. Y., Mohtar, S. S., Aziz, F., Wan Salleh, W. N., Yusof, N., Jaafar, J., & Ismail, A. F. (2021). Floatable photocatalyst LaFeO3/modified expanded perlite composite for photocatalytic ammonia degradation. Journal of Water Process Engineering, 44, 102401. https://doi.org/https://doi.org/10.1016/j.jwpe.2021.102401
Kim, Y., Choi, Y. S., Park, S. Y., Kim, T., Hong, S. P., Lee, T. H., Moon, C. W., Lee, J. H., Lee, D., Hong, B. H., & Jang, H. W. (2019). Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen. Nanoscale, 11(6), 2966–2973. https://doi.org/10.1039/c8nr09076a
Leela Wati, Annu Goel, Kushal Raj. (2017). Ethanol Production From Different Substrates: Effects On Environmental Factors And Potential Applications. In Engineering Interventions in Foods and Plants (pp. 211–246). Apple Academic Press.
Li, M., Zhu, H., Wei, G., He, A., & Liu, Y. (2019). DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated. 35862–35871. https://doi.org/10.1039/c9ra02958c
Li, Y., Chen, K., Liu, Y., Ma, J., Liao, Y., Yang, H., Cheng, J., Yue, Q., Yuan, K., Ren, Y., Zou, Y., & Deng, Y. (2023). Gadolinium-doped mesoporous tungsten oxides: Rational synthesis, gas sensing performance, and mechanism investigation. Nano Research, 16(5), 7527–7536. https://doi.org/10.1007/s12274-022-5274-6
Li, Y., Xu, Y., & Li, X. (2022). The sensing mechanism of HCHO gas sensor based on transition metal doped graphene: Insights from DFT study. Sensors and Actuators A: Physical, 338, 113460. https://doi.org/https://doi.org/10.1016/j.sna.2022.113460
Maity, I., Ghosh, K., Rahaman, H., & Bhattacharyya, P. (2017). Selectivity Tuning of Graphene Oxide Based Reliable Gas Sensor Devices by Tailoring the Oxygen Functional Groups: A DFT Study Based Approach. IEEE Transactions on Device and Materials Reliability, 17(4), 738–745. https://doi.org/10.1109/TDMR.2017.2766291
Nga Phan, T. T., My Dinh, T. T., Duc Nguyen, M., Dan Li, Nhan Phan, C., Kien Pham, T., Tu Nguyen, C., & Huyen Pham, T. (2022). Hierarchically structured LaFeO3 with hollow core and porous shell as efficient sensing material for ethanol detection. Sensors and Actuators B: Chemical, 354, 131195. https://doi.org/https://doi.org/10.1016/j.snb.2021.131195
Ning, X., Zhang, Z., Zheng, K., Wang, X., & Wang, J. (2023). Experimental and Numerical Studies on the Explosion Characteristics of Ethanol–Air Mixtures under Aviation Conditions. Fire, 6(9). https://doi.org/10.3390/fire6090349
Nishitani, Y. (2019). Alcohol and traffic accidents in Japan. IATSS Research, 43(2), 79–83. https://doi.org/https://doi.org/10.1016/j.iatssr.2019.06.002
Pacchioni, G. (2021). Highly efficient perovskite LEDs. Nature Reviews Materials, 6(2), 108. https://doi.org/10.1038/s41578-021-00280-5
Prabhakar Abhilash, K. P., Lath, D., Kowshik, J., Jose, A., & Chandy, G. M. (2019). Blood alcohol levels in road traffic accidents: Factors associated and the relationship between history of alcohol consumption and blood alcohol level detection. International Journal of Critical Illness and Injury Science, 9(3), 132–137. https://doi.org/10.4103/IJCIIS.IJCIIS_45_19
Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., & Novoselov, K. S. (2007). Detection of individual gas molecules adsorbed on graphene. Nature Materials, 6(9), 652–655. https://doi.org/10.1038/nmat1967
Sharma, N., Kushwaha, H. S., Sharma, S. K., & Sachdev, K. (2020). Fabrication of LaFeO3 and rGO-LaFeO3 microspheres based gas sensors for detection of NO2 and CO. RSC Advances, 10(3), 1297–1308. https://doi.org/10.1039/C9RA09460A
Suhendi, E., Amanda, Z. L., Ulhakim, M. T., Setiawan, A., & Syarif, D. G. (2021). The enhancement of ethanol gas sensors response based on calcium and zinc co-doped LaFeO3/Fe2O3 thick film ceramics utilizing yarosite minerals extraction as Fe2O3 precursor. Journal of Metals, Materials and Minerals, 31(2), 71–77. https://doi.org/10.14456/jmmm.2021.21
Suhendi, E., Putri, A. E., Ulhakim, M. T., Setiawan, A., & Syarif, D. G. (2022). Investigation of ZnO doping on LaFeO3/Fe2O3 prepared from yarosite mineral extraction for ethanol gas sensor applications. AIMS Materials Science, 9(1), 105–118. https://doi.org/10.3934/MATERSCI.2022007
Sun, Z., Zhang, Y., Liu, W., Wang, Y., & Ren, S. (2018). Innovative Thought and Methodology of Planck Constant Experiment Based on Photoelectric Effect Theorem. 221(Ceed), 667–670.
Wang, H., Luo, W., Tian, Z., & Ouyang, C. (2019). First principles study of alkali and alkaline earth metal ions adsorption and diffusion on penta-graphene. Solid State Ionics, 342(July), 115062. https://doi.org/10.1016/j.ssi.2019.115062
Wang, Y., Li, H., Huang, D., Wang, X., Cai, L., Chen, Y., Wang, W., Song, Y., Han, G., & Zhen, B. (2022). A high-performance ethanol gas sensor based on Ce-doped SnO2 nanomaterials prepared by the Pechini method. Materials Science in Semiconductor Processing, 137, 106188. https://doi.org/https://doi.org/10.1016/j.mssp.2021.106188
Wu, T., Pisula, W., Rashid, M. Y. A., & Gao, P. (2019). Application of Perovskite-Structured Materials in Field-Effect Transistors. Advanced Electronic Materials, 5(12), 1900444. https://doi.org/https://doi.org/10.1002/aelm.201900444
Zhang, H. C., & Zhao, X. . (2020). The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy & Enviromental Science. https://doi.org/10.1039/D0EE00092B
Zhang, L., Mei, L., Wang, K., Lv, Y., Zhang, S., Lian, Y., Liu, X., Ma, Z., Xiao, G., Liu, Q., Zhai, S., Zhang, S., Liu, G., Yuan, L., Guo, B., Chen, Z., Wei, K., Liu, A., Yue, S., … Ding, L. (2023). Advances in the Application of Perovskite Materials. Nano-Micro Letters, 15(1), 177. https://doi.org/10.1007/s40820-023-01140-3
Zhang, Q., Shang, Q., Su, R., Do, T. T. H., & Xiong, Q. (2021). Halide Perovskite Semiconductor Lasers: Materials, Cavity Design, and Low Threshold. Nano Letters, 21(5), 1903–1914. https://doi.org/10.1021/acs.nanolett.0c03593
Zhang, Y., Ma, Y., Wang, Y., Zhang, X., Zuo, C., Shen, L., & Ding, L. (2021). Lead-Free Perovskite Photodetectors: Progress, Challenges, and Opportunities. Advanced Materials, 33(26), 2006691. https://doi.org/https://doi.org/10.1002/adma.202006691
Zhou, Y., Lü, Z., Li, J., Xu, S., Xu, D., & Wei, B. (2021). The electronic properties and structural stability of LaFeO3 oxide by niobium doping: A density functional theory study. International Journal of Hydrogen Energy, 46(13), 9193–9198. https://doi.org/10.1016/j.ijhydene.2020.12.202
Zhou, Y., Lü, Z., Wei, B., Xu, S., Xu, D., & Yang, Z. (2016). The comparative theoretical study of the LaBO3 (001) (B = Mn, Fe, Co, and Ni) surface properties and oxygen adsorption mechanisms. Ionics, 22(7), 1153–1158. https://doi.org/10.1007/s11581-016-1638-9
DOI: http://dx.doi.org/10.24042/jipfalbiruni.v13i1.17909
Refbacks
- There are currently no refbacks.
Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.