Enhanced Ethanol Gas Sensor Performance through Adsorption Energy Analysis of Gd-Doped LaFeO3 with rGO Coating: A Density Functional Theory Study

Maulana Ibrohim, Andhy Setiawan, Waslaluddin Waslaluddin, Taufik Syah Mauludin, Endi Suhendi, Ahmad Aminudin

Abstract


LaFeO3 (LFO) is commonly used as a material for gas sensor applications. However, the LFO material in ethanol gas sensor applications can still improve sensitivity and selectivity parameters. Gadolinium (Gd) doping is widely used in gas sensor applications to increase the sensitivity of gas sensors. In addition, reduced graphene oxide (rGO) materials are commonly used in gas sensor applications to increase gas sensors' selectivity, sensitivity, and working temperature. This study analyzed the effect of Gd doping (LGFO) and the addition of an rGO single layer on LFO material (LGFO@rGO) on sensitivity and selectivity based on the adsorption energy of the system with ethanol gas molecules. Density Functional Theory studies were conducted to yield insight into the LGFO or LGFO@rGO – ethanol gas interactions and the sensitivity and selectivity improvement by changing adsorption energy. Based on the analysis, the presence of Gd doping and single-layer rGO could increase the adsorption energy. The addition of the rGO layer showed an escalation of the adsorption energy of about 9.45%, 2.49 eV in the LGFO to -2.75 eV LGFO@rGO. This improved adsorption capacity translates to a higher sensitivity for detecting lower concentrations of ethanol gas. This result shows the potential of LGFO and LGFO@rGO as ethanol gas sensor materials.

Keywords


Density functional theory; Ethanol gas sensor; Gd-doping; LaFeO3, Reduce graphene oxide

Full Text:

PDF

References


Abed Al- Abbas, S. S., Muhsin, M. K., & Jappor, H. R. (2018). Tunable optical and electronic properties of gallium telluride monolayer for photovoltaic absorbers and ultraviolet detectors. Chemical Physics Letters, 713(September), 46–51. https://doi.org/10.1016/j.cplett.2018.10.020

Atta, N. F., Galal, A., & El-Ads, E. H. (2016). Perovskite Nanomaterials – Synthesis, Characterization, and Applications. Perovskite Materials - Synthesis, Characterisation, Properties, and Applications. https://doi.org/10.5772/61280

Baharum, N. B., Daud Awang, M., Arshad, S., & Abd Gani, S. S. (2020). A Study of Literatures: Status of Alcohol in Cosmetics Products from Shariah Views in Malaysia. KnE Social Sciences, 2020, 379–393. https://doi.org/10.18502/kss.v4i9.7338

Cao, E., Feng, Y., Guo, Z., Wang, H., Song, G., Zhang, Y., Hao, W., Sun, L., & Nie, Z. (2020). Ethanol sensing characteristics of (La,Ba)(Fe,Ti)O3 nanoparticles with impurity phases of BaTiO3 and BaCO3. Journal of Sol-Gel Science and Technology, 96(2), 431–440. https://doi.org/10.1007/s10971-020-05369-x

Cao, E., Wu, A., Wang, H., Zhang, Y., Hao, W., & Sun, L. (2019). Enhanced Ethanol Sensing Performance of Au and Cl Comodified LaFeO3 Nanoparticles. ACS Applied Nano Materials, 2(3), 1541–1551. https://doi.org/10.1021/acsanm.9b00024

Chen, M., Wang, H., Hu, J., Zhang, Y., Li, K., Zhang, D., Zhou, S., Zhang, J., Zhu, Z., & Liu, Q. (2019). Near-Room-Temperature Ethanol Gas Sensor Based on Mesoporous Ag/Zn–LaFeO3 Nanocomposite. Advanced Materials Interfaces, 6(1). https://doi.org/10.1002/admi.201801453

Çolak, H., & Karaköse, E. (2022). Gadolinium(III)-doped ZnO nanorods and gas sensing properties. Materials Science in Semiconductor Processing, 139, 106329. https://doi.org/10.1016/j.mssp.2021.106329

Dua, V., Surwade, S. P., Ammu, S., Agnihotra, S. R., Jain, S., Roberts, K. E., Park, S., Ruoff, R. S., & Manohar, S. K. (2010). All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide. Angewandte Chemie, 122(12), 2200–2203. https://doi.org/10.1002/ange.200905089

Enhessari, M., & Salehabadi, A. (2016). Perovskites-Based Nanomaterials for Chemical Sensors. Progresses in Chemical Sensor, August. https://doi.org/10.5772/62559

Fellah, M. F. (2021). The reduced graphene oxide/WO3: Sensing properties for NO2 gas detection at room temperature. Diamond and Related Materials, 119(2), 108593. https://doi.org/10.1016/j.diamond.2021.108593

Fergus, J. W. (2007). Perovskite oxides for semiconductor-based gas sensors. In Sensors and Actuators, B: Chemical (Vol. 123, Issue 2, pp. 1169–1179). https://doi.org/10.1016/j.snb.2006.10.051

Guo, L., Hao, Y. W., Li, P. L., Song, J. F., Yang, R. Z., Fu, X. Y., Xie, S. Y., Zhao, J., & Zhang, Y. L. (2018). Improved NO2 Gas Sensing Properties of Graphene Oxide Reduced by Two-beam-laser Interference. Scientific Reports, 8(1), 1–7. https://doi.org/10.1038/s41598-018-23091-1

Haryadi, H., Syarif, D. G., & Suhendi, E. (2022). The Effect of Couple Doping Gd and Co on The Physical Characteristics of LaFeO3 Thick Film for Acetone Gas Sensor Application. Jurnal Penelitian Fisika Dan Aplikasinya (JPFA), 12(2), 115–126. https://doi.org/10.26740/jpfa.v12n2.p115-126

Joy, R., Han, Z., Xu, K., Pan, X., Liao, N., & Zhou, H. (2020). DFT investigation of gas sensing characteristics of Au-doped vanadium dioxide. Physics Letters, Section A: General, Atomic and Solid State Physics, 384(32), 2–6. https://doi.org/10.1016/j.physleta.2020.126823

Khen, L. Y., Mohtar, S. S., Aziz, F., Wan Salleh, W. N., Yusof, N., Jaafar, J., & Ismail, A. F. (2021). Floatable photocatalyst LaFeO3/modified expanded perlite composite for photocatalytic ammonia degradation. Journal of Water Process Engineering, 44, 102401. https://doi.org/https://doi.org/10.1016/j.jwpe.2021.102401

Kim, Y., Choi, Y. S., Park, S. Y., Kim, T., Hong, S. P., Lee, T. H., Moon, C. W., Lee, J. H., Lee, D., Hong, B. H., & Jang, H. W. (2019). Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen. Nanoscale, 11(6), 2966–2973. https://doi.org/10.1039/c8nr09076a

Leela Wati, Annu Goel, Kushal Raj. (2017). Ethanol Production From Different Substrates: Effects On Environmental Factors And Potential Applications. In Engineering Interventions in Foods and Plants (pp. 211–246). Apple Academic Press.

Li, M., Zhu, H., Wei, G., He, A., & Liu, Y. (2019). DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated. 35862–35871. https://doi.org/10.1039/c9ra02958c

Li, Y., Chen, K., Liu, Y., Ma, J., Liao, Y., Yang, H., Cheng, J., Yue, Q., Yuan, K., Ren, Y., Zou, Y., & Deng, Y. (2023). Gadolinium-doped mesoporous tungsten oxides: Rational synthesis, gas sensing performance, and mechanism investigation. Nano Research, 16(5), 7527–7536. https://doi.org/10.1007/s12274-022-5274-6

Li, Y., Xu, Y., & Li, X. (2022). The sensing mechanism of HCHO gas sensor based on transition metal doped graphene: Insights from DFT study. Sensors and Actuators A: Physical, 338, 113460. https://doi.org/https://doi.org/10.1016/j.sna.2022.113460

Maity, I., Ghosh, K., Rahaman, H., & Bhattacharyya, P. (2017). Selectivity Tuning of Graphene Oxide Based Reliable Gas Sensor Devices by Tailoring the Oxygen Functional Groups: A DFT Study Based Approach. IEEE Transactions on Device and Materials Reliability, 17(4), 738–745. https://doi.org/10.1109/TDMR.2017.2766291

Nga Phan, T. T., My Dinh, T. T., Duc Nguyen, M., Dan Li, Nhan Phan, C., Kien Pham, T., Tu Nguyen, C., & Huyen Pham, T. (2022). Hierarchically structured LaFeO3 with hollow core and porous shell as efficient sensing material for ethanol detection. Sensors and Actuators B: Chemical, 354, 131195. https://doi.org/https://doi.org/10.1016/j.snb.2021.131195

Ning, X., Zhang, Z., Zheng, K., Wang, X., & Wang, J. (2023). Experimental and Numerical Studies on the Explosion Characteristics of Ethanol–Air Mixtures under Aviation Conditions. Fire, 6(9). https://doi.org/10.3390/fire6090349

Nishitani, Y. (2019). Alcohol and traffic accidents in Japan. IATSS Research, 43(2), 79–83. https://doi.org/https://doi.org/10.1016/j.iatssr.2019.06.002

Pacchioni, G. (2021). Highly efficient perovskite LEDs. Nature Reviews Materials, 6(2), 108. https://doi.org/10.1038/s41578-021-00280-5

Prabhakar Abhilash, K. P., Lath, D., Kowshik, J., Jose, A., & Chandy, G. M. (2019). Blood alcohol levels in road traffic accidents: Factors associated and the relationship between history of alcohol consumption and blood alcohol level detection. International Journal of Critical Illness and Injury Science, 9(3), 132–137. https://doi.org/10.4103/IJCIIS.IJCIIS_45_19

Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., & Novoselov, K. S. (2007). Detection of individual gas molecules adsorbed on graphene. Nature Materials, 6(9), 652–655. https://doi.org/10.1038/nmat1967

Sharma, N., Kushwaha, H. S., Sharma, S. K., & Sachdev, K. (2020). Fabrication of LaFeO3 and rGO-LaFeO3 microspheres based gas sensors for detection of NO2 and CO. RSC Advances, 10(3), 1297–1308. https://doi.org/10.1039/C9RA09460A

Suhendi, E., Amanda, Z. L., Ulhakim, M. T., Setiawan, A., & Syarif, D. G. (2021). The enhancement of ethanol gas sensors response based on calcium and zinc co-doped LaFeO3/Fe2O3 thick film ceramics utilizing yarosite minerals extraction as Fe2O3 precursor. Journal of Metals, Materials and Minerals, 31(2), 71–77. https://doi.org/10.14456/jmmm.2021.21

Suhendi, E., Putri, A. E., Ulhakim, M. T., Setiawan, A., & Syarif, D. G. (2022). Investigation of ZnO doping on LaFeO3/Fe2O3 prepared from yarosite mineral extraction for ethanol gas sensor applications. AIMS Materials Science, 9(1), 105–118. https://doi.org/10.3934/MATERSCI.2022007

Sun, Z., Zhang, Y., Liu, W., Wang, Y., & Ren, S. (2018). Innovative Thought and Methodology of Planck Constant Experiment Based on Photoelectric Effect Theorem. 221(Ceed), 667–670.

Wang, H., Luo, W., Tian, Z., & Ouyang, C. (2019). First principles study of alkali and alkaline earth metal ions adsorption and diffusion on penta-graphene. Solid State Ionics, 342(July), 115062. https://doi.org/10.1016/j.ssi.2019.115062

Wang, Y., Li, H., Huang, D., Wang, X., Cai, L., Chen, Y., Wang, W., Song, Y., Han, G., & Zhen, B. (2022). A high-performance ethanol gas sensor based on Ce-doped SnO2 nanomaterials prepared by the Pechini method. Materials Science in Semiconductor Processing, 137, 106188. https://doi.org/https://doi.org/10.1016/j.mssp.2021.106188

Wu, T., Pisula, W., Rashid, M. Y. A., & Gao, P. (2019). Application of Perovskite-Structured Materials in Field-Effect Transistors. Advanced Electronic Materials, 5(12), 1900444. https://doi.org/https://doi.org/10.1002/aelm.201900444

Zhang, H. C., & Zhao, X. . (2020). The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy & Enviromental Science. https://doi.org/10.1039/D0EE00092B

Zhang, L., Mei, L., Wang, K., Lv, Y., Zhang, S., Lian, Y., Liu, X., Ma, Z., Xiao, G., Liu, Q., Zhai, S., Zhang, S., Liu, G., Yuan, L., Guo, B., Chen, Z., Wei, K., Liu, A., Yue, S., … Ding, L. (2023). Advances in the Application of Perovskite Materials. Nano-Micro Letters, 15(1), 177. https://doi.org/10.1007/s40820-023-01140-3

Zhang, Q., Shang, Q., Su, R., Do, T. T. H., & Xiong, Q. (2021). Halide Perovskite Semiconductor Lasers: Materials, Cavity Design, and Low Threshold. Nano Letters, 21(5), 1903–1914. https://doi.org/10.1021/acs.nanolett.0c03593

Zhang, Y., Ma, Y., Wang, Y., Zhang, X., Zuo, C., Shen, L., & Ding, L. (2021). Lead-Free Perovskite Photodetectors: Progress, Challenges, and Opportunities. Advanced Materials, 33(26), 2006691. https://doi.org/https://doi.org/10.1002/adma.202006691

Zhou, Y., Lü, Z., Li, J., Xu, S., Xu, D., & Wei, B. (2021). The electronic properties and structural stability of LaFeO3 oxide by niobium doping: A density functional theory study. International Journal of Hydrogen Energy, 46(13), 9193–9198. https://doi.org/10.1016/j.ijhydene.2020.12.202

Zhou, Y., Lü, Z., Wei, B., Xu, S., Xu, D., & Yang, Z. (2016). The comparative theoretical study of the LaBO3 (001) (B = Mn, Fe, Co, and Ni) surface properties and oxygen adsorption mechanisms. Ionics, 22(7), 1153–1158. https://doi.org/10.1007/s11581-016-1638-9




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v13i1.17909

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.