Earth Gravity Detection System with Altitude Variations Using Phypox Application Integrated with Smartphone Acoustic Sensors

Rio Sebastian, Suparno Suparno, Puji Hariati Winingsih, Handoyo Saputro, Nadya Amalia Putri Hapsari

Abstract


This study aims to examine the effect of altitude on the acceleration of gravity with the help of smartphone acoustic sensors. The altitude varies from the interval 100-1061 MASL (Mean Above Sea Level), located around the Special Region of Yogyakarta. An iron ball is dropped from a certain height, and the time it falls is observed using an acoustic sensor in Phypox, and the results are used to determine the acceleration value due to gravity (g) through the equation g = 2h/t2. Fitting data from measurements of the four altitude variations are shown in the polynomial equation y = 0.000003x2 – 0.0035x +10.718 m/s2 with a regression number R2 = 1,000. This equation shows that the acceleration value due to gravity will decrease quadratically with each increase in the altitude per meter above sea level.

Keywords


Acceleration Gravity; Altitude; Phypox; Smartphone Acoustic Sensors

Full Text:

PDF

References


AbdElazem, S., & Al-Basheer, W. (2015). Measuring the acceleration due to gravity using an IR transceiver. European Journal of Physics, 36(4), 45017. https://doi.org/10.1088/0143-0807/36/4/045017

Abellán-García, F. J., García-Gamuz, J. A., Valerdi-Pérez, R. P., & Ibáñez-Mengual, J. A. (2012). Gravity acceleration measurements using a soundcard. European Journal of Physics, 33(5), 1271–1276. https://doi.org/10.1088/0143-0807/33/5/1271

Afifah, N., Yulianawati, D., Agustina, N., Lestari, R. D. S., & Nugraha, M. G. (2015). Metode sederhana menentukan percepatan gravitasi bumi menggunakan aplikasi tracker pada gerak parabola sebagai media dalam pembelajaran fisika SMA. Prosiding Simposium Nasional Inovasi Dan Pembelajaran Sains 2015, 2015(Snips), 305–308. https://www.researchgate.net/publication/308163319

Aguiar, C. E., & Laudares, F. (2003). Listening to the coefficient of restitution and the gravitational acceleration of a bouncing ball. American Journal of Physics, 71(5), 499–501. https://doi.org/10.1119/1.1524166

Aisiyah, M. C., Annas, M. A., Ningrum, I. E., Widodo, A., & Cahyani, H. D. (2022). Studi eksperimen bandul dalam menentukan percepatan gravitasi bumi dan memahami konsep gerak harmonik sederhana. Tsaqofah, 2(3), 393–400. https://doi.org/10.58578/tsaqofah.v2i3.517

Anni, M. (2021). Quantitative comparison between the smartphone based experiments for the gravity acceleration measurement at home. Education Sciences, 11(9). https://doi.org/10.3390/educsci11090493

Artawan, P. (2013). Analisis variatif gravitasi bumi di berbagai koordinat dengan ayunan sederhana. Jurusan Pendidikan Fisika, 396–399.

Bara, F. M., Mako, M. I., Eku, A., & Pau, M. A. (2021). Analisis percepatan gravitasi menggunakan aplikasi phyphox pada gerak jatuh bebas. Jurnal Luminous: Riset Ilmiah Pendidikan Fisika, 2(2), 11. https://doi.org/10.31851/luminous.v2i2.5923

Carroll, R., & Lincoln, J. (2020). Phyphox app in the physics classroom. The Physics Teacher, 58(8), 606–607. https://doi.org/10.1119/10.0002393

Chakravarthi, V. (2011). Encyclopedia of solid earth geophysics. Springer Netherlands.

Delti, G. (2022). Efektivitas praktikum percepatan gravitasi di laboratorium fisika. Indonesian Journal of Laboratory, 5(2), 75–82. https://journal.ugm.ac.id/ijl/article/view/76041

Dove, D., Coakley, B., Hopper, J., & Kristoffersen, Y. (2010). Bathymetry, controlled source seismic and gravity observations of the Mendeleev ridge; implications for ridge structure, origin, and regional tectonics. Geophysical Journal International, 183(2), 481–502. https://doi.org/10.1111/j.1365-246X.2010.04746.x

Elot, Y. M., Angol, Y., Alus, G., Astro, R. B., & Nasar, A. (2022). Analisis percepatan gravitasi berbasis video tracking pada ayunan bandul. Jurnal Kumparan Fisika, 5(2), 69–76. https://doi.org/10.33369/jkf.5.2.69-76

Fatmala, F. D., Wahyudi, I., Suyanto, E., & Herlina, K. (2019). The effect of GIL assisted phyphox in physics learning towards creative thinking. Jurnal Pembelajaran Fisika, 8(2), 141–150. https://doi.org/10.23960/jpf.v8.n2.202002

Ferrari, G., Poli, N., Sorrentino, F., & Tino, G. M. (2006). Long-lived bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale. Physical Review Letters, 97(6), 1–4. https://doi.org/10.1103/PhysRevLett.97.060402

Firdaus, T., Erwin, E., & Rosmiati, R. (2019). Eksperimen mandiri siswa dalam penentuan percepatan gravitasi bumi pada materi gerak jatuh bebas. Titian Ilmu: Jurnal Ilmiah Multi Sciences, 11(1), 31–36. https://doi.org/10.30599/jti.v11i1.385

Fontana, E., Yeung, C., & Hall, J. C. (2020). Determining the acceleration due to gravity and friction using the ticker tape timer method. The Physics Teacher, 58(5), 338–339. https://doi.org/10.1119/1.5145530

Goswami, N., White, O., Blaber, A., Evans, J., van Loon, J. J. W. A., & Clement, G. (2021). Human physiology adaptation to altered gravity environments. Acta Astronautica, 189(August), 216–221. https://doi.org/10.1016/j.actaastro.2021.08.023

Halliday, D., Resnick, R., & Walker, J. (2010). Fisika dasar (7th ed.). Erlangga.

Hauth, M., Freier, C., Schkolnik, V., Senger, A., Schmidt, M., & Peters, A. (2013). First gravity measurements using the mobile atom interferometer GAIN. Applied Physics B: Lasers and Optics, 113(1), 49–55. https://doi.org/10.1007/s00340-013-5413-6

Hwang, C., Shih, H. C., Hsiao, Y. S., & Huang, C. H. (2012). Airborne gravity surveys over taiwan island and strait, kuroshio current and south china sea: Comparison of gps and gravity accuracies at different flight altitudes. Marine Geodesy, 35(3), 287–305. https://doi.org/10.1080/01490419.2011.634962

Khairurrijal, Widiatmoko, E., Srigutomo, W., & Kurniasih, N. (2012). Measurement of gravitational acceleration using a computer microphone port. Physics Education, 47(6), 709–714. https://doi.org/10.1088/0031-9120/47/6/709

Kittiravechote, A., & Sujarittham, T. (2020). Measuring the acceleration of gravity using a smartphone, A4-papers, and a pencil. International Journal of Advanced Science and Technology, 29(7 Special Issue), 884–889.

Kittiravechote, A., & Sujarittham, T. (2021). Comparison of experts and novices in determining the gravitational acceleration using mobile phone with phyphox application. 29th International Conference on Computers in Education Conference, ICCE 2021 - Proceedings, 1, 381–386.

Koneshov, V., Solov’ev, V. N., Drobyshev, M. N., & Nepoklonov, V. B. (2015). Error estimation of earth gravity field anomaly models by airborne gravimetric surveys. Proc. 22nd Int. Conf. Integrated Navigation Systems, 180–184.

Kuhn, J. (2014). Relevant information about using a mobile phone acceleration sensor in physics experiments. American Journal of Physics, 82(2), 94–94. https://doi.org/10.1119/1.4831936

Kuhn, J., & Vogt, P. (2013). Smartphones as experimental tools: Different methods to determine the gravitational acceleration in classroom physics by using everyday devices. European Journal of Physics Education, 4(1), 16–27. http://ejpe.erciyes.edu.tr/index.php/EJPE/article/view/84%5Cnhttp://ejpe.erciyes.edu.tr/index.php/EJPE/article/download/84/pdf

Kus Indratno, T. (2016). Pengaruh gerhana matahari terhadap nilai percepatan gravitasi bumi: sarana pembelajaran untuk mendekatkan fisika pada kehidupan sehari-hari. Jurnal Riset Dan Kajian Pendidikan Fisika, 3(1), 10. https://doi.org/10.12928/jrkpf.v3i1.4539

Lo, C. Y. (2011). Could Galileo be wrong? Physics Essays, 24(4), 477–482. https://doi.org/10.4006/1.3636395

Madáč, K., Madáč, A., & Popovec, P. (2021). Measuring the direction of gravity acceleration. Measurement: Journal of the International Measurement Confederation, 184(July). https://doi.org/10.1016/j.measurement.2021.109908

Marson, I., & Faller, J. E. (1986). g -the acceleration of gravity: its measurement and its importance. J. Phys. E: Scie. Instrum, 22(22–32).

Martini, D., & Oktova, R. (2009). Penentuan modulus young kawat besi dengan percobaan regangan. Berkala Fisika Indonesia, 2(1), 1–14.

Masson, F., Mouyen, M., Hwang, C., Wu, Y. M., Ponton, F., Lehujeur, M., & Dorbath, C. (2012). Lithospheric structure of Taiwan from gravity modelling and sequential inversion of seismological and gravity data. Tectonophysics, 578, 3–9. https://doi.org/10.1016/j.tecto.2012.04.012

Mayampoh, L. B., Tulandi, D. A., Rende, J., Poluakan, C., & Komansilan, A. (2021). Phyphox application with PIMCA learning model. Journal of Physics: Conference Series, 1968(1). https://doi.org/10.1088/1742-6596/1968/1/012042

Mc Guirk, J. M., Foster, G. T., Fixler, J. B., Snadden, M. J., & Kasevich, M. A. (2002). Sensitive absolute-gravity gradiometry using atom interferometry. Physical Review A - Atomic, Molecular, and Optical Physics, 65(3), 1–14. https://doi.org/10.1103/PhysRevA.65.033608

Ménoret, V., Vermeulen, P., Le Moigne, N., Bonvalot, S., Bouyer, P., Landragin, A., & Desruelle, B. (2018). Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-30608-1

Meyer, D. Z., & Avery, L. M. (2009). Excel as a qualitative data analysis tool. Field Methods, 21(1), 91–112. https://doi.org/10.1177/1525822X08323985

Micheli, M., Farnocchia, D., Meech, K. J., Buie, M. W., Hainaut, O. R., Prialnik, D., Schörghofer, N., Weaver, H. A., Chodas, P. W., Kleyna, J. T., Weryk, R., Wainscoat, R. J., Ebeling, H., Keane, J. V., Chambers, K. C., Koschny, D., & Petropoulos, A. E. (2018). Non-gravitational acceleration in the trajectory of 1I/2017 U1 ('Oumuamua). Nature, 559(7713), 223–226. https://doi.org/10.1038/s41586-018-0254-4

Nanto, D., Agustina, R. D., Ramadhanti, I., Putra, R. P., & Mulhayatiah, D. (2022). The usefulness of LabXChange virtual lab and PhyPhox real lab on pendulum student practicum during pandemic. Journal of Physics: Conference Series, 2157(1). https://doi.org/10.1088/1742-6596/2157/1/012047

Nugroho, H. S., Nurjanah, A., Nugraha, M. G., & ... (2018). Analisis pengaruh gerhana bulan total 31 Januari 2018 pada percepatan gravitasi di permukaan bumi menggunakan sensor photogate pada bandul matematis teroptimalisasi. Prosiding Seminar …, January. https://www.researchgate.net/profile/Harbi-Nugroho/publication/334683894_Analisis_Pengaruh_Gerhana_Bulan_Total_31_Januari_2018_pada_Percepatan_Gravitasi_Di_Permukaan_Bumi_menggunakan_Sensor_Photogate_pada_Bandul_Matematis_Teroptimalisasi/links/5d39fb1d928

Nurullaeli, N., & Astuti, I. A. D. (2018). Pembuatan graphic user interface (GUI) untuk analisis ayunan matematis menggunakan matlab. Titian Ilmu: Jurnal Ilmiah Multi Sciences, 10(2), 48–56. https://doi.org/10.30599/jti.v10i2.205

Ose, S. O. (2016). Using excel and word to structure qualitative Data. Journal of Applied Social Science, 10(2), 147–162. https://doi.org/10.1177/1936724416664948

Peters, A., Chung, K. Y., & Chu, S. (1999). Measurement of gravitational acceleration by dropping atoms. Nature, 400(2–3), 110–120. https://doi.org/10.1016/S0375-9601(99)00565-4

Peters, A., Chung, K. Y., & Chu, S. (2001). High-precision gravity measurements using atom interferometry. Metrologia, 38(1), 25–61. https://doi.org/10.1088/0026-1394/38/1/4

Pili, U., Violanda, R., & Ceniza, C. (2018). Measurement of g using a magnetic pendulum and a smartphone magnetometer . The Physics Teacher, 56(4), 258–259. https://doi.org/10.1119/1.5028247

Poli, N., Wang, F. Y., Tarallo, M. G., Alberti, A., Prevedelli, M., & Tino, G. M. (2011). Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. Physical Review Letters, 106(3), 1–4. https://doi.org/10.1103/PhysRevLett.106.038501

Pusch, A., Ubben, M. S., Laumann, D., Heinicke, S., & Heusler, S. (2021). Real-time data acquisition using Arduino and phyphox: Measuring the electrical power of solar panels in contexts of exposure to light in physics classroom. Physics Education, 56(4). https://doi.org/10.1088/1361-6552/abe993

R., H. (2014). Menghitung percepatan gravitasi bandul dan gerak parabola. Komunikasi Fisika Indonesia, 11(8), 547–552.

Rinanthy, E. P., Hufri, & Kamus, Z. (2016). Pembuatan alat penentuan percepatan gravitasi bumi menggunakan metode pendulum berbasis sensor cahaya LDR. Pillar of Physics, 8, 33–40.

Rosdianto, H. (2017). Penentuan percepatan gravitasi pada percobaan gerak jatuh bebas dengan memanfaatkan rangkaian relai. SPEKTRA: Jurnal Fisika Dan Aplikasinya, 2(2), 107. https://doi.org/10.21009/spektra.022.03

Salim, M. B., Widiartha, I. W. O., & Suseno, N. (2022). Pengukuran percepatan gravitasi di kota Metro. JPF (Jurnal Pendidikan Fisika), 10(2), 201–212.

Saputro, H., Sebastian, R., Budiyono, E., & Hariati Winingsih, P. (2022). Development of physics based on Phypox application with smartphone acoustic sensor on free-fall motion materials. Jurnal Pembelajaran Sains, 6(1), 24–30. http://journal2.um.ac.id/index.php/

Schwarz, O., Vogt, P., & Kuhn, J. (2013). Acoustic measurements of bouncing balls and the determination of gravitational acceleration. The Physics Teacher, 51(5), 312–313. https://doi.org/10.1119/1.4801369

Sebastian, S., S, H., H, H., & C, S. (2018). Advanced tools for smartphone based experiments : Phyphox. Physics Education, 53, 1–6.

Snadden, M. J., Mc Guirk, J. M., Bouyer, P., Haritos, K. G., & Kasevich, M. A. (1998). Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer. Physical Review Letters, 81(5), 971–974. https://doi.org/10.1103/PhysRevLett.81.971

Sokolov, A. V., Krasnov, A. A., & Konovalov, A. B. (2016). Measurements of the acceleration of gravity on board of various kinds of aircraft. Measurement Techniques, 59(6), 565–570. https://doi.org/10.1007/s11018-016-1009-y

Staacks, S., Dorsel, D., Hütz, S., Stallmach, F., Splith, T., Heinke, H., & Stampfer, C. (2022). Collaborative smartphone experiments for large audiences with phyphox. European Journal of Physics, 43(5), 55702. https://doi.org/10.1088/1361-6404/ac7830

Subhan, M., Rahmawati, E., Suswati, L., Yus’iran, Y., & Fatimah, F. (2022). Variasi ketinggian MDPL terhadap nilai percepatan gravitasi bumi pada konsep gerak jatuh bebas (GJB) untuk pendekatan pembelajaran. Jurnal Pendidikan MIPA, 12(3), 831–837. https://doi.org/10.37630/jpm.v12i3.660

Suciarahmat, A., & Pramudya, Y. (2015). Sensor smartphone dalam eksperimen penentuan percepatan gravitasi aplikasi sensor smartphone dalam eksperimen penentuan percepatan gravitasi. Jurnal Fisika Indonesia, 19(55), 10–13.

Usayidah, U., & Rahmawati, E. (2015). Penentuan percepatan gravitasi bumi lokal menggunakan model osilasi gerak pendulum. Jurnal Inovasi Fisika Indonesia, 04(2), 16–20.

Vogt, P., & Kuhn, J. (2012). Analyzing free fall with a smartphone acceleration sensor. The Physics Teacher, 50(3), 182–183. https://doi.org/10.1119/1.3685123

Walid, I. H. B. I., & Umar, M. F. Bin. (2022). Development of a free fall motion experiment based on smart phone using phyphox application. Journal of Physics: Conference Series, 2309(1). https://doi.org/10.1088/1742-6596/2309/1/012085

White, J. A., Medina, A., Román, F. L., & Velasco, S. (2007). A measurement of g listening to falling balls. The Physics Teacher, 45(3), 175–177. https://doi.org/10.1119/1.2709678

Xia, K. yuan, Huang, C. liu, Jiang, S. ren, Zhang, Y. xiang, Su, D. quan, Xia, S. gao, & Chen, Z. rong. (1994). Comparison of the tectonics and geophysics of the major structural belts between the northern and southern continental margins of the South China Sea. Tectonophysics, 235(1–2), 99–116. https://doi.org/10.1016/0040-1951(94)90019-1




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v12i1.15462

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.