Solution of Klein-Gordon Equation in F(R) Theory of Gravity

Arista Romadani

Abstract


The  theory, as a modification of the general relativity theory, is frequently employed as an alternative theory of gravity and offers a promising avenue for addressing the challenges of formulating a quantum gravity theory. In this study, by applying the separation method of time, radial and angular variables, we derived the general solution of the Klein-Gordon equation in a curved space-time using modified Schwarzschild metric. We modified Ricci scalar  form in Einstein’s action principle as a general function of Ricci scalar  and formulated the general Schwarzschild metric. The solution of the time function was analytically obtained in exponential form, and the solution of the angular function in terms of Legendre polynomial depends on azimuthal and magnetic quantum numbers. The radial function in terms of a non-linear second-order differential equation was solved by a numerical method using Python. The solutions described the gravitational effect for a light particle on the area gravitationally has a strong interaction, represented by a spherically symmetric metric. For small  (in Schwarzschild radius), the results analytically show that the gravitational effect in this region is massive. It follows that even light would be drawn into a black hole and unable to escape. For further research, it is expected to extend the Klein-Gordon equation in relativistic quantum mechanics to modified general relativity theory. This theory offers a different way of looking at the effects of gravity in quantum field theory.

Keywords


f(R) theory; General relativity; Klein-Gordon; Modified gravity; Schwarzschild metric.

Full Text:

PDF

References


Barausse, E. (2019). Black Holes in General Relativity and Beyond. 1. https://doi.org/10.3390/proceedings2019017001

Bezerra, V. B., Cunha, M. S., Freitas, L. F. F., Muniz, C. R., & Tahim, M. O. (2017). Casimir effect in the Kerr space-time with quintessence. Modern Physics Letters A, 32(1). https://doi.org/10.1142/S0217732317500055

Bezerra, V. B., Vieira, H. S., & Costa, A. A. (2014). The Klein-Gordon equation in the space-time of a charged and rotating black hole. Classical and Quantum Gravity, 31(4). https://doi.org/10.1088/0264-9381/31/4/045003

Bjorken, J. D., Drell, S. D., & Kahn, P. B. (1966). Relativistic Quantum Fields. American Journal of Physics. https://doi.org/10.1119/1.1972989

Brans, C., & Dicke, R. H. (1961). Mach’s principle and a relativistic theory of gravitation. Physical Review. https://doi.org/10.1103/PhysRev.124.925

Buchdahl, H. A. (1970). Non-Linear Lagrangians and Cosmological Theory. Monthly Notices of the Royal Astronomical Society. https://doi.org/10.1093/mnras/150.1.1

Bussey, P. J. (n.d.). Improving our understanding of the Klein–Gordon equation. 5.

Capozziello, S., Stabile, A., & Troisi, A. (2010). Comparing scalar-tensor gravity and f (R)-gravity in the Newtonian limit. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. https://doi.org/10.1016/j.physletb.2010.02.042

Capozziello, Salvatore, & de Laurentis, M. (2011). Extended Theories of Gravity. In Physics Reports. https://doi.org/10.1016/j.physrep.2011.09.003

Capozziello, Salvatore, De Laurentis, M., & Stabile, A. (2010). Axially symmetric solutions in f(R)-gravity. Classical and Quantum Gravity. https://doi.org/10.1088/0264-9381/27/16/165008

Capozziello, Salvatore, & Francaviglia, M. (2008). Extended theories of gravity and their cosmological and astrophysical applications. General Relativity and Gravitation. https://doi.org/10.1007/s10714-007-0551-y

Capozziello, Salvatore, Frusciante, N., & Vernieri, D. (2012). New spherically symmetric solutions in f (R)-gravity by Noether symmetries. General Relativity and Gravitation. https://doi.org/10.1007/s10714-012-1367-y

De La Cruz-Dombriz, A., Dobado, A., & Maroto, A. L. (2009). Black holes in f(R) theories. Physical Review D - Particles, Fields, Gravitation and Cosmology, 80(12). https://doi.org/10.1103/PhysRevD.80.124011

Elizalde, E. (1988). Exact solutions of the massive Klein-Gordon-Schwarzschild equation. Physical Review D. https://doi.org/10.1103/PhysRevD.37.2127

Faraoni, V., & Capozziello, S. (2011). Beyond Einstein Gravity. In Beyond Einstein Gravity. https://doi.org/10.1007/978-94-007-0165-6

Ferraris, M., Francaviglia, M., & Reina, C. (1982). Variational formulation of general relativity from 1915 to 1925 “Palatini’s method” discovered by Einstein in 1925. General Relativity and Gravitation. https://doi.org/10.1007/BF00756060

Griffith. (2004). Griffiths D.J. Introduction to quantum mechanics 2nd ed. - Solutions (pp. 1–408). http://gen.lib.rus.ec/search?req=griffiths+quantum&nametype=orig&column[]=title&column[]=author&column[]=series&column[]=publisher&column[]=year%5Cnpapers2://publication/uuid/144B4C25-73E7-49EA-88B0-0104E1580F48

Joseph, S. K. (2020). Quantum-gravity in a dynamical system perspective. ArXiv.

Lehn, R. D., Chabysheva, S. S., & Hiller, J. R. (2018a). Klein-Gordon equation in curved space-time. European Journal of Physics, 39(4). https://doi.org/10.1088/1361-6404/aabdde

Lehn, R. D., Chabysheva, S. S., & Hiller, J. R. (2018b). Klein-Gordon equation in curved space-time. European Journal of Physics. https://doi.org/10.1088/1361-6404/aabdde

Multamäki, T., & Vilja, I. (2006). Spherically symmetric solutions of modified field equations in f(R) theories of gravity. Physical Review D - Particles, Fields, Gravitation and Cosmology. https://doi.org/10.1103/PhysRevD.74.064022

Nojiri, S., & Odintsov, S. D. (2007). Introduction to modified gravity and gravitational alternative for dark energy. International Journal of Geometric Methods in Modern Physics. https://doi.org/10.1142/S0219887807001928

Odintsov, S. D., & Oikonomou, V. K. (2019). Unification of inflation with dark energy in f (R) gravity and axion dark matter. Physical Review D, 99(10). https://doi.org/10.1103/PhysRevD.99.104070

Polchinski, J. (2017). The Black Hole Information Problem. 353–397. https://doi.org/10.1142/9789813149441_0006

Pourhassan, B. (2016). The Klein-Gordon equation of a rotating charged hairy black hole in (2 + 1) dimensions. Modern Physics Letters A. https://doi.org/10.1142/S0217732316500577

Qin, Y. P. (2012). Exact solutions to the klein-gordon equation in the vicinity of schwarzschild black holes. Science China: Physics, Mechanics and Astronomy, 55(3), 381–384. https://doi.org/10.1007/s11433-012-4634-8

Renner, R., & Wang, J. (2021). The black hole information puzzle and the quantum de Finetti theorem. http://arxiv.org/abs/2110.14653

Romadani, A. (2015). Lubang hitam schwarzschild pada perluasan teori relativitas umum; schwarzschild black hole on the extended of general relativity theory. UGM.

Romadani, A., & Rani, E. (2020). Pengaruh Medan Elektromagnet terhadap Partikel Dirac dan Klein-Gordon dalam Potensial Penghalang Periodik Satu Dimensi. JPSE (Journal of Physical Science and Engineering), 4(1), 8–17. https://doi.org/10.17977/um024v4i12019p008

Rowan, D. J., & Stephenson, G. (1976). Solutions of the time-dependent Klein-Gordon equation in a Schwarzschild background space. Journal of Physics A: General Physics. https://doi.org/10.1088/0305-4470/9/10/014

Shankaranarayanan, S., & Johnson, J. P. (2022). Modified theories of gravity: Why, how and what? General Relativity and Gravitation, 54(5). https://doi.org/10.1007/s10714-022-02927-2

Sorge, F. (2014). Casimir energy in Kerr space-time. Physical Review D - Particles, Fields, Gravitation and Cosmology, 90(8). https://doi.org/10.1103/PhysRevD.90.084050

Sotiriou, T. P., & Faraoni, V. (2010). F (R) theories of gravity. Reviews of Modern Physics. https://doi.org/10.1103/RevModPhys.82.451

Straight, M. C., Sakstein, J., & Baxter, E. J. (2020). Modified gravity and the black hole mass gap. Physical Review D, 102(12). https://doi.org/10.1103/PhysRevD.102.124018

Vieira, H. S., Bezerra, V. B., & Muniz, C. R. (2014). Exact solutions of the Klein-Gordon equation in the Kerr-Newman background and Hawking radiation. Annals of Physics, 350, 14–28. https://doi.org/10.1016/j.aop.2014.07.011

Yadav, B. K., & Verma, M. M. (2019). Dark matter as scalaron in f(R) gravity models. Journal of Cosmology and Astroparticle Physics, 2019(10). https://doi.org/10.1088/1475-7516/2019/10/052

Yagi, K., & Stein, L. C. (2016). Black hole based tests of general relativity. Classical and Quantum Gravity, 33(5). https://doi.org/10.1088/0264-9381/33/5/054001




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v12i1.15340

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.