Optimization of Oxygen Flow Valve Holes in Small Industrial Scale Husk Furnaces

Siti Hajar, Nazopatul Patonah Har, Irmansyah Irmansyah, Ardian Arif, Irzaman Irzaman

Abstract


The increasing use of fossil-based fuels causes an imbalance between energy demand and the availability of that energy. Therefore, the use of rice husk biomass as alternative energy was implemented through the use of rice husk furnaces. This research aims to optimize the efficiency of a small industrial-scale husk furnace by varying the oxygen flow valve holes and the mass of the heated water. The test on the husk furnace was carried out using the Water Boiling Test (WBT) method with the following test parameters: combustion time, FCR, input power, output power, power loss, radiant energy, and thermal conductivity of the pan and chimney of the husk furnace. Tests were carried out on four variations of the oxygen flow valve holes (horizontal: 18 x 36 cm2 and 27 x 36 cm2, vertical: 27 x 24 cm2 and 27 x 12 cm2) and three variations in the mass of heated water (6 kg, 12 kg, and 18 kg). The highest efficiency of the husk furnace was obtained at 18 kg of water, and based on each test parameter, the performance of the husk furnace was most optimal at the horizontal valve hole measuring 27 x 36 cm2 with an average efficiency of 17.32%.


Keywords


Efficiency; Husk Furnace; Optimization; Oxygen Flow Valve Hole; Rice Husk.

Full Text:

PDF

References


Agung, A. I. (2013). Potensi sumber energi alternatif dalam mendukung kelistrikan nasional. Jurnal Pendidikan Teknik Elektro. https://ejournal.unesa.ac.id/index.php/jurnal-pendidikan-teknik-elektro/article/view/7425

Ajis, A. A., Widiharsa, F. A., & Ma’ruf, M. (2015). Analisa efisiensi termal tungku biomassa menggunakan bahan bakar kayu bakar. TRANSMISI, 11(1), 9–18. https://doi.org/10.26905/JTMT.V11I1.4535

Akhter, F., Soomro, S. A., Jamali, A. R., Chandio, Z. A., Siddique, M., & Ahmed, M. (2021). Rice husk ash as green and sustainable biomass waste for construction and renewable energy applications: a review. Biomass Conversion and Biorefinery, 1–11.

Ale, B. B., Bhattarai, N., Gautam, J., Chapagain, P., & Pushpa, K. C. (2009). Institutional gasifier stove: A sustainable prospect for institutional cooking. Journal of the Institute of Engineering, 7(1), 142–149. https://doi.org/10.3126/JIE.V7I1.2074

Anggara, R., Suwandi, S., & Iskandar, R. F. (2019). Pengaruh jumlah lubang udara pada tungku pembakaran serta variasi kecepatan aliran udara terhadap kinerja kompor gasifikasi dengan bahan bakar pelet kayu jati. EProceedings of Engineering, 6(2), 5225–5233. https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/9705

Arutyunov, V. S., & Lisichkin, G. V. (2017). Energy resources of the 21st century: Problems and forecasts. Can renewable energy sources replace fossil fuels. Russian Chemical Reviews, 86(8), 777.

Barlin, N. M. P. (2012). Studi performa tungku pembakaran biomassa berbahan bakar limbah sekam padi. Prosiding Seminar Nasional Resatek, Jurusan Teknik Mesin, Fakultas Teknik, Universitas Sriwijaya, Palembang.

Belonio, A. T. (2005). Rice Husk Gas Stove Handbook. Appropriate Technology Center. Department of Agricultural Engineering and Environmental Management, College of Agriculture, Central Philippine University.

Darmasetiawan, H., Irzaman, I., Demijati, D., & Siswadi, S. (2010). Kajian hasil pembuatan tiga macam ukuran lubang berbentuk persegi panjang pada tubuh tungku sekam. BERKALA FISIKA, 13(2), 1–4. https://doi.org/10.2/JQUERY.MIN.JS

Demiyati, D. (2010). Pembuatan beberapa macam ukuran lubang pada dinding tubuh tungku sekam untuk mendapatkan efisiensi kalor lebih tinggi. IPB University.

Dewi, R. P., & Ardhitama, M. B. (2020). Kajian potensi sekam padi sebagai energi alternatif pendukung ketahanan energi di wilayah Magelang. SENASTER “Seminar Nasional Riset Teknologi Terapan,” 1(1), 1–5. https://jurnal.untidar.ac.id/index.php/senaster/article/view/2570

Hakim, L. (2016). Analisa teoritis laju aliran kalor pada ketel uap pipa air mini industri tahu di tinjau dari koefisien perpindahan panas menyeluruh. Jurnal Surya Teknika, 1(4), 50–55. https://doi.org/10.37859/JST.V1I04.1188

Hung, N. Van, Quilloy, R., & Gummert, M. (2018). Improving energy efficiency and developing an air-cooled grate for the downdraft rice husk furnace. Renewable Energy, 115(1), 969–977. https://doi.org/10.1016/J.RENENE.2017.09.012

Kholiq, I. (2015). Analisis pemanfaatan sumber daya energi alternatif sebagai energi terbarukan untuk mendukung subtitusi BBM. Jurnal Iptek, 19(2), 75–91.

Makul, N., Fediuk, R., Amran, M., Al-Akwaa, M. S., Pralat, K., Nemova, D., Petropavlovskii, K., Novichenkova, T., Petropavlovskaya, V., & Sulman, M. (2021). Utilization of biomass to ash: An overview of the potential resources for alternative energy. Materials, 14(21), 6482.

Maulana, R. (2008). Optimasi efisiensi tungku sekam dengan variasi lubang utama pada badan kompor. Institut Pertanian Bogor.

Mofijur, M., Mahlia, T. M. I., Logeswaran, J., Anwar, M., Silitonga, A. S., Rahman, S. M. A., & Shamsuddin, A. H. (2019). Potential of rice industry biomass as a renewable energy source. Energies, 12(21), 4116.

Mulyanto, A., Mirmanto, M., & Athar, M. (2016). Pengaruh ketinggian lubang udara pada tungku pembakaran biomassa terhadap unjuk kerjanya. Dinamika Teknik Mesin, 6(1), 22–30.

Nawafi, F., Puspita, R. D., Desna, D., & Irzaman, I. (2010). Optimasi tungku sekam skala industri kecil dengan sistem boiler. Jurnal Jurusan Fisika FMIPA UNDIP, 12(3), 77–84.

Nirwana, L., Rais, M., & Jamaluddin P, J. P. (2018). Konduktivitas termal pasir kali sebagai media penghantar panas pada proses penyangraian kerupuk. Jurnal Pendidikan Teknologi Pertanian, 3, 182. https://doi.org/10.26858/jptp.v3i0.5718

Noor, I., Ahmad, F., Irzaman, & Alatas, H. (2017). Simulation of heat transfer in husk furnace with cone geometry based on conical coordinate system. Journal of Physics: Conference Series, 877, 012025. https://doi.org/10.1088/1742-6596/877/1/012025

Nunes, L. J. R., Causer, T. P., & Ciolkosz, D. (2020). Biomass for energy: A review on supply chain management models. Renewable and Sustainable Energy Reviews, 120, 109658.

Nuzul, M. (2010). Pemanfaatan sekam padi sebagai bahan bakar alternatif. Sinergi, 8(2), 137–156.

Pujotomo, I. (2017). Potensi pemanfaatan biomassa sekam padi untuk pembangkit listrik melalui teknologi gasifikasi. Energi & Kelistrikan, 9(2), 126–135.

Susana, I. G. B., & Alit, I. B. (2020). The utilization of rice husk with furnace modification based on the heat exchanger pipe type for sustainable energy of traditional drying. International Journal of Mechanical and Production Engineering Research and Development, 10(4), 285–294.

Syahira, Z., Nugroho, D. A. A., Faizin, R., Ramadhan, F. K., Sejahtera, S., Perdana, S., Ahyad, M., Tsauqi, A. K., Thariq, A. M., & Yani, A. (2016). Optimasi analisis dan efisiensi energi termal menggunakan tungku sekam sebagai bahan bakar alternatif rumah tangga (studi kasus: praktikum termodinamika). Prosiding Seminar Nasional Fisika (E-Journal), 5, SNF2016-ERE.

Usman, M., Okta, T., Muhammad, H., & Tambunan, W. (2017). Pemetaan panas penyerapan radiasi Terahertz (THz) dalam jaringan biologi pada sapi. Journal Online of Physics, 3(1), 23–26.




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v11i2.14291

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.