Properties of Pineapple Leaf Fibers with Paper Waste as An Absorbing-Composite to Reduce Noise

Kartika Sari, Yazid Zainur Isnen, Agung Bambang Setio Utomo, Sunardi Sunardi

Abstract


Natural product-based noise-absorbing composite can be an alternative to replace synthetic fiber because of its advantages of high strength, toughness, low price, and abundance to reduce noise. The materials used were pineapple leaf fibers with paper waste. This research aims to study the advantage of natural products to reduce noise by analyzing the coefficient of sound absorption and impact strength to evaluate the absorbing composite. The composites were tested with the Charpy method with ISO 11654 standard and ASTM E23 for sound absorption and impact strength. Sound absorption was carried out using an impedance tube at a frequency range of 250 – 3000 Hz. The volume fraction of pineapple leaf fibers, paper waste, and resin epoxy concentrations were 20% : 30% : 50%, 25% : 25% : 50%, and 30% : 20% : 50%. The thickness for the sound absorption coefficient was 2 cm and 3 cm, while the thickness of the impact strength was 0.5 cm. The highest sound absorption coefficient of pineapple leaf fibers composite for 30% : 20% : 50% volume fraction was 0.788 for sample 2 cm. The highest impact strength for 20% : 30% : 50% volume fraction of the thickness of 0.5 cm was 3.527 J/mm2. The results of the sound absorption coefficient will increase if used more pineapple leaf fibers but it will decrease the impact strength. Based on this research, the pineapple leaf fibers will improve the quality of the composite that can be used as a sound-absorbing material as well. These materials possess the promising potential to decrease waste and are used in industries for a low cost.

Keywords


Composite; Pineapple leaf fibers; Paper waste; Sound absorption; Impact strength

Full Text:

PDF

References


Andrew, J. J., & Dhakal, H. N. (2022). Sustainable biobased composites for advanced applications: recent trends and future opportunities – A critical review. Composites Part C: Open Access, 7(1), 1–32. https://doi.org/https://doi.org/10.1016/j.jcomc.2021.100220

Arwanda, R., & Sani, R. . (2019). Koefisien Absorpsi Bunyi pada Bahan Beton Komposit Serat Daun Nanas dengan Menggunakan Metode Tabung Impedansi. Einstein (e-Journal), 7(3), 52–55. https://doi.org/10.24114/einstein.v7i3.15169

Astrauskas, T., Januševičius, T., & Grubliauskas, R. (2021). Acoustic panels made of paper sludge and clay composites. Sustainability (Switzerland), 13(2), 1–10. https://doi.org/10.3390/su13020637

Callister, W. D., & Rethwisch, D. G. (2018). Material Science and Engineering an Introduction. John Wiley & Sons.

Fareez, I. M., Ibrahim, N. A., Wan Yaacob, W. M. H., Mamat Razali, N. A., Jasni, A. H., & Abdul Aziz, F. (2018). Characteristics of cellulose extracted from Josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching. Cellulose, 25(8), 4407–4421. https://doi.org/10.1007/s10570-018-1878-0

Ghofir, H. A., & Sutanto. (2018). Comparison of the acoustic behavour between paper waste of HVS and carton in similar composite. International Journal of Engineering & Technology, 7(2), 444–448. https://doi.org/10.14419/ijet.v7i2.8972

González, A. E. (2019). How Do Acoustic Materials Work? In Z. E. A. Fellah & E. Ogam (Eds.), Acoustics of Materials (pp. 1–17). IntechOpen. https://doi.org/10.5772/intechopen.82380

Gupta, A., Gupta, A., Jain, K., & Gupta, S. (2018). Noise Pollution and Impact on Children Health. Indian J Pediatr, 84(4), 300–306. https://doi.org/10.1007/s12098-017-2579-7

Haryadi, A. N. M., Isnen, Y. Z., Khusaenah, N., Adira, K. F., Sa’adah, H., Muawanah, A., & Sari, K. (2021). Sifat Fisis dan Akustik Komposit Serat Daun Lidah Mertua dengan Serbuk Gergaji sebagai Peredam Bunyi. Jurnal Rekayasa Mesin, 16(3), 409–416.

Hoque, M. B., Hannan, M. A., Mollah, M. Z. I., Faruque, M. R. I., & Khan, R. A. (2022). Physico-mechanical properties enhancement of pineapple leaf fiber (PALF) reinforced epoxy resin-based composites using guar gum (polysaccharide) filler: effects of gamma radiation. Radiation Effects and Defects in Solids, 177(3), 401–416. https://doi.org/10.1080/10420150.2022.2043317

Isran, I., Kadir, A. R., & Hasanudin, L. (2018). Pembuatan Material Komposit Resin Poliester yang Dipadukan Limbah Kertas dan Abu Sekam Padi Sebagai Peredam Akustik. Enthalpy, 1–10.

Jain, J., & Sinha, S. (2021). Pineapple Leaf Fiber Polymer Composites as a Promising Tool for Sustainable, Eco-friendly Composite Material: Review. Journal of Natural Fibers, 1(1), 1–22. https://doi.org/10.1080/15440478.2021.1993478

Malalli, C. S., & Ramji, B. R. (2022). Mechanical characterization of natural fiber reinforced polymer composites and their application in Prosthesis: A review. Materials Today: Proceedings, 62(1), 3435–3443. https://doi.org/https://doi.org/10.1016/j.matpr.2022.04.276

Mwango, A., & Kambole, C. (2019). Engineering Characteristics and Potential Increased Utilisation of Sawdust Composites in Construction—A Review. Journal of Building Construction and Planning Research, 7(3), 59–88. https://doi.org/10.4236/jbcpr.2019.73005

Nair, S. N., & Dasari, A. (2022). Development and Characterization of Natural-Fiber-Based Composite Panels. Polymers, 14(10), 2079. https://doi.org/10.3390/polym14102079

Nhuapeng, W., & Thamjaree, W. (2019). Fabrication and Mechanical Properties of Hybrid Composites between Pineapple fiber/Styrofoam Particle/Paper Tissue. Materials Today: Proceedings, 17(4), 1444–1450. https://doi.org/https://doi.org/10.1016/j.matpr.2019.06.166

Oguntunde, P. E., Okagbue, H. I., Oguntunde, O. A., & Odetunmibi, O. O. (2019). A Study of Noise Pollution Measurements and Possible Effects on Public Health in Ota Metropolis, Nigeria. Open Access Macedonian Journal of Medical Sciences, 7(8), 1391–1395. https://doi.org/10.3889/oamjms.2019.234

Pöhler, T., Jetsu, P., Fougerón, A., & Barraud, V. (2017). Use of papermaking pulps in foam-formed thermal insulation materials. Nordic Pulp & Paper Research Journal, 32(3), 367–374. https://doi.org/doi:10.3183/npprj-2017-32-03-p367-374

Purboputro, P. I., & Hariyanto, A. (2017). Analisis Sifat Tarik Dan Impak Komposit Serat Rami Dengan Perlakuan Alkali Dalam Waktu 2,4,6 Dan 8 Jam Bermatrik Poliester. Media Mesin: Majalah Teknik Mesin, 18(2), 64–75. https://doi.org/10.23917/mesin.v18i2.5238

Putra, A., Or, K. H., Selamat, M. Z., Nor, M. J. M., Hassan, M. H., & Prasetiyo, I. (2018). Sound absorption of extracted pineapple-leaf fibres. Applied Acoustics, 136(1), 9–15. https://doi.org/https://doi.org/10.1016/j.apacoust.2018.01.029

Putra, A., Prasetiyo, I., & Selamat, Z. (2020). Green Acoustic Absorber from Pineapple Leaf Fibers. In Green Energy and Technology (pp. 143–165). https://doi.org/10.1007/978-981-15-1416-6_8

Rus, A. Z. M., Azahari, M. S. M., Kormin, S., Soon, L. B., Zaliran, M. T., & Ahraz Sadrina, M. L. F. (2017). Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials. AIP Conference Proceedings, 1877(4), 1–8. https://doi.org/10.1063/1.4999883

Sandi, Kumalasari, Akbar, J., Sari, R., & Afriani, F. (2020). Jurnal Fisika Indonesia. Jurnal Riset Fisika Indonesia, 1(1), 13–16.

Santulli, C., Palanisamy, S., & Kalimuthu, M. (2022). Chapter 14 - Pineapple fibers, their composites and applications. In S. Mavinkere Rangappa, J. Parameswaranpillai, S. Siengchin, T. Ozbakkaloglu, & H. Wang (Eds.), Plant Fibers, their Composites, and Applications (pp. 323–346). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-824528-6.00007-2

Sharma, S. K., Shukla, S. R., & Sethy, A. K. (2020). Acoustical behaviour of natural fibres-based composite boards as sound-absorbing materials. Journal of the Indian Academy of Wood Science, 17(1), 66–72. https://doi.org/10.1007/s13196-020-00255-z

Taban, E., Khavanin, A., Jafari, A. J., Faridan, M., & Tabrizi, A. K. (2019). Experimental and mathematical survey of sound absorption performance of date palm fibers. Heliyon, 5(6), 1–8. https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e01977

Taban, E., Khavanin, A., Ohadi, A., Putra, A., Jafari, A. J., Faridan, M., & Soleimanian, A. (2019). Study on the acoustic characteristics of natural date palm fibres: Experimental and theoretical approaches. Building and Environment, 161(106274), 1–8. https://doi.org/https://doi.org/10.1016/j.buildenv.2019.106274

Tang, X., & Yan, X. (2017). Acoustic energy absorption properties of fibrous materials: A review. Composites Part A: Applied Science and Manufacturing, 101(4722), 360–380. https://doi.org/https://doi.org/10.1016/j.compositesa.2017.07.002

Todkar, S. S., & Patil, S. A. (2019). Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Composites Part B: Engineering, 174(106927), 1–72. https://doi.org/https://doi.org/10.1016/j.compositesb.2019.106927

Venkata, D. P., Raju, K. S. R., & Reddy, M. I. (2019). Dynamic mechanical analysis of banana, pineapple leaf and glass fibre reinforced hybrid polyester composites. Materials Today: Proceedings, 18(6), 2114–2117. https://doi.org/https://doi.org/10.1016/j.matpr.2019.06.484

Xu, X., Wang, H., Sun, Y., Han, J., & Huang, R. (2018). Sound absorbing properties of perforated composite panels of recycled rubber, fiberboard sawdust, and high density polyethylene. Journal of Cleaner Production, 187(6), 215–221. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.03.174

Zulaikha, W., Hassan, M. Z., & Ismail, Z. (2022). Recent development of natural fibre for nanocellulose extraction and application. Materials Today: Proceedings, 1(7), 1–8. https://doi.org/https://doi.org/10.1016/j.matpr.2022.06.221




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v11i2.12356

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.