Properties of Pineapple Leaf Fibers with Paper Waste as An Absorbing-Composite to Reduce Noise
Abstract
Keywords
Full Text:
PDFReferences
Andrew, J. J., & Dhakal, H. N. (2022). Sustainable biobased composites for advanced applications: recent trends and future opportunities – A critical review. Composites Part C: Open Access, 7(1), 1–32. https://doi.org/https://doi.org/10.1016/j.jcomc.2021.100220
Arwanda, R., & Sani, R. . (2019). Koefisien Absorpsi Bunyi pada Bahan Beton Komposit Serat Daun Nanas dengan Menggunakan Metode Tabung Impedansi. Einstein (e-Journal), 7(3), 52–55. https://doi.org/10.24114/einstein.v7i3.15169
Astrauskas, T., Januševičius, T., & Grubliauskas, R. (2021). Acoustic panels made of paper sludge and clay composites. Sustainability (Switzerland), 13(2), 1–10. https://doi.org/10.3390/su13020637
Callister, W. D., & Rethwisch, D. G. (2018). Material Science and Engineering an Introduction. John Wiley & Sons.
Fareez, I. M., Ibrahim, N. A., Wan Yaacob, W. M. H., Mamat Razali, N. A., Jasni, A. H., & Abdul Aziz, F. (2018). Characteristics of cellulose extracted from Josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching. Cellulose, 25(8), 4407–4421. https://doi.org/10.1007/s10570-018-1878-0
Ghofir, H. A., & Sutanto. (2018). Comparison of the acoustic behavour between paper waste of HVS and carton in similar composite. International Journal of Engineering & Technology, 7(2), 444–448. https://doi.org/10.14419/ijet.v7i2.8972
González, A. E. (2019). How Do Acoustic Materials Work? In Z. E. A. Fellah & E. Ogam (Eds.), Acoustics of Materials (pp. 1–17). IntechOpen. https://doi.org/10.5772/intechopen.82380
Gupta, A., Gupta, A., Jain, K., & Gupta, S. (2018). Noise Pollution and Impact on Children Health. Indian J Pediatr, 84(4), 300–306. https://doi.org/10.1007/s12098-017-2579-7
Haryadi, A. N. M., Isnen, Y. Z., Khusaenah, N., Adira, K. F., Sa’adah, H., Muawanah, A., & Sari, K. (2021). Sifat Fisis dan Akustik Komposit Serat Daun Lidah Mertua dengan Serbuk Gergaji sebagai Peredam Bunyi. Jurnal Rekayasa Mesin, 16(3), 409–416.
Hoque, M. B., Hannan, M. A., Mollah, M. Z. I., Faruque, M. R. I., & Khan, R. A. (2022). Physico-mechanical properties enhancement of pineapple leaf fiber (PALF) reinforced epoxy resin-based composites using guar gum (polysaccharide) filler: effects of gamma radiation. Radiation Effects and Defects in Solids, 177(3), 401–416. https://doi.org/10.1080/10420150.2022.2043317
Isran, I., Kadir, A. R., & Hasanudin, L. (2018). Pembuatan Material Komposit Resin Poliester yang Dipadukan Limbah Kertas dan Abu Sekam Padi Sebagai Peredam Akustik. Enthalpy, 1–10.
Jain, J., & Sinha, S. (2021). Pineapple Leaf Fiber Polymer Composites as a Promising Tool for Sustainable, Eco-friendly Composite Material: Review. Journal of Natural Fibers, 1(1), 1–22. https://doi.org/10.1080/15440478.2021.1993478
Malalli, C. S., & Ramji, B. R. (2022). Mechanical characterization of natural fiber reinforced polymer composites and their application in Prosthesis: A review. Materials Today: Proceedings, 62(1), 3435–3443. https://doi.org/https://doi.org/10.1016/j.matpr.2022.04.276
Mwango, A., & Kambole, C. (2019). Engineering Characteristics and Potential Increased Utilisation of Sawdust Composites in Construction—A Review. Journal of Building Construction and Planning Research, 7(3), 59–88. https://doi.org/10.4236/jbcpr.2019.73005
Nair, S. N., & Dasari, A. (2022). Development and Characterization of Natural-Fiber-Based Composite Panels. Polymers, 14(10), 2079. https://doi.org/10.3390/polym14102079
Nhuapeng, W., & Thamjaree, W. (2019). Fabrication and Mechanical Properties of Hybrid Composites between Pineapple fiber/Styrofoam Particle/Paper Tissue. Materials Today: Proceedings, 17(4), 1444–1450. https://doi.org/https://doi.org/10.1016/j.matpr.2019.06.166
Oguntunde, P. E., Okagbue, H. I., Oguntunde, O. A., & Odetunmibi, O. O. (2019). A Study of Noise Pollution Measurements and Possible Effects on Public Health in Ota Metropolis, Nigeria. Open Access Macedonian Journal of Medical Sciences, 7(8), 1391–1395. https://doi.org/10.3889/oamjms.2019.234
Pöhler, T., Jetsu, P., Fougerón, A., & Barraud, V. (2017). Use of papermaking pulps in foam-formed thermal insulation materials. Nordic Pulp & Paper Research Journal, 32(3), 367–374. https://doi.org/doi:10.3183/npprj-2017-32-03-p367-374
Purboputro, P. I., & Hariyanto, A. (2017). Analisis Sifat Tarik Dan Impak Komposit Serat Rami Dengan Perlakuan Alkali Dalam Waktu 2,4,6 Dan 8 Jam Bermatrik Poliester. Media Mesin: Majalah Teknik Mesin, 18(2), 64–75. https://doi.org/10.23917/mesin.v18i2.5238
Putra, A., Or, K. H., Selamat, M. Z., Nor, M. J. M., Hassan, M. H., & Prasetiyo, I. (2018). Sound absorption of extracted pineapple-leaf fibres. Applied Acoustics, 136(1), 9–15. https://doi.org/https://doi.org/10.1016/j.apacoust.2018.01.029
Putra, A., Prasetiyo, I., & Selamat, Z. (2020). Green Acoustic Absorber from Pineapple Leaf Fibers. In Green Energy and Technology (pp. 143–165). https://doi.org/10.1007/978-981-15-1416-6_8
Rus, A. Z. M., Azahari, M. S. M., Kormin, S., Soon, L. B., Zaliran, M. T., & Ahraz Sadrina, M. L. F. (2017). Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials. AIP Conference Proceedings, 1877(4), 1–8. https://doi.org/10.1063/1.4999883
Sandi, Kumalasari, Akbar, J., Sari, R., & Afriani, F. (2020). Jurnal Fisika Indonesia. Jurnal Riset Fisika Indonesia, 1(1), 13–16.
Santulli, C., Palanisamy, S., & Kalimuthu, M. (2022). Chapter 14 - Pineapple fibers, their composites and applications. In S. Mavinkere Rangappa, J. Parameswaranpillai, S. Siengchin, T. Ozbakkaloglu, & H. Wang (Eds.), Plant Fibers, their Composites, and Applications (pp. 323–346). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-824528-6.00007-2
Sharma, S. K., Shukla, S. R., & Sethy, A. K. (2020). Acoustical behaviour of natural fibres-based composite boards as sound-absorbing materials. Journal of the Indian Academy of Wood Science, 17(1), 66–72. https://doi.org/10.1007/s13196-020-00255-z
Taban, E., Khavanin, A., Jafari, A. J., Faridan, M., & Tabrizi, A. K. (2019). Experimental and mathematical survey of sound absorption performance of date palm fibers. Heliyon, 5(6), 1–8. https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e01977
Taban, E., Khavanin, A., Ohadi, A., Putra, A., Jafari, A. J., Faridan, M., & Soleimanian, A. (2019). Study on the acoustic characteristics of natural date palm fibres: Experimental and theoretical approaches. Building and Environment, 161(106274), 1–8. https://doi.org/https://doi.org/10.1016/j.buildenv.2019.106274
Tang, X., & Yan, X. (2017). Acoustic energy absorption properties of fibrous materials: A review. Composites Part A: Applied Science and Manufacturing, 101(4722), 360–380. https://doi.org/https://doi.org/10.1016/j.compositesa.2017.07.002
Todkar, S. S., & Patil, S. A. (2019). Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Composites Part B: Engineering, 174(106927), 1–72. https://doi.org/https://doi.org/10.1016/j.compositesb.2019.106927
Venkata, D. P., Raju, K. S. R., & Reddy, M. I. (2019). Dynamic mechanical analysis of banana, pineapple leaf and glass fibre reinforced hybrid polyester composites. Materials Today: Proceedings, 18(6), 2114–2117. https://doi.org/https://doi.org/10.1016/j.matpr.2019.06.484
Xu, X., Wang, H., Sun, Y., Han, J., & Huang, R. (2018). Sound absorbing properties of perforated composite panels of recycled rubber, fiberboard sawdust, and high density polyethylene. Journal of Cleaner Production, 187(6), 215–221. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.03.174
Zulaikha, W., Hassan, M. Z., & Ismail, Z. (2022). Recent development of natural fibre for nanocellulose extraction and application. Materials Today: Proceedings, 1(7), 1–8. https://doi.org/https://doi.org/10.1016/j.matpr.2022.06.221
DOI: http://dx.doi.org/10.24042/jipfalbiruni.v11i2.12356
Refbacks
- There are currently no refbacks.
Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.