Understanding gait characteristics of Japanese elderly men through joint angle and angular velocity parameters
Abstract
Keywords
Full Text:
PDFReferences
Afiah, I. N., Nakashima, H., Loh, P. Y., & Muraki, S. (2016). An exploratory investigation of changes in gait parameters with age in elderly Japanese women. SpringerPlus,5(1), 1-14. https://doi.org/10.1186/s40064-016-2739-7
Alexander, N. B. (1996). Gait disorders in older adults. Journal of the American Geriatrics Society, 44(4), 434–451. https://doi.org/10.1111/j.15325415.1996.tb06417.x
Anderson, D. E., & Madigan, M. L. (2014). Healthy older adults have insufficient hip range of motion and plantar flexor strength to walk like healthy young adults. Journal of Biomechanics, 47(5), 1104–1109. https://doi.org/10.1016/j.jbiomech.2013.12.024
Andriacchi, T. P., Ogle, J. A., & Galante, J. O. (1977). Walking speed as a basis for normal and abnormal gait measurements. Journal of Biomechanics, 10(4), 261–268. https://doi.org/10.1016/0021-9290(77)90049-5
Astephen Wilson, J. L., Deluzio, K. J., Dunbar, M. J., Caldwell, G. E., & Hubley-Kozey, C. L. (2011). The association between knee joint biomechanics and neuromuscular control and moderate knee osteoarthritis radiographic and pain severity. Osteoarthritis and Cartilage, 19(2), 186–193.
https://doi.org/10.1016/j.joca.2010.10.020
Ayyappa, E. (1997). Normal human locomotion, Part 1: basic concepts and terminology. Journal of Prosthetics and Orthotics, 9(1), 10–17.
Cho, S. H., Park, J. M., & Kwon, O. Y. (2004). Gender differences in three dimensional gait analysis data from 98 healthy Korean adults. Clinical Biomechanics, 19(2), 145–152. https://doi.org/10.1016/j.clinbiomech.2003.10.003
D’Ambrogio, E. (2020). Japan’s ageing society. European Parliament Think Tank, December, 10. https://www.europarl.europa.eu/thinktank/en/document.html?reference=EPRS_BRI(2020)659419
Demura, T., Demura, S. ichi, Yamaji, S., Yamada, T., & Kitabayashi, T. (2012). Gait characteristics when walking with rounded soft sole shoes. Foot, 22(1), 18–23. https://doi.org/10.1016/j.foot.2011.09.002
Endo, K., & Herr, H. (2014). A model of muscle-tendon function in human walking at self-selected speed. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(2), 352–362. https://doi.org/10.1109/TNSRE.2013.2291903
Frank, J. S., & Patla, A. E. (2003). Balance and mobility challenges in older adults: Implications for preserving community mobility. American Journal of Preventive Medicine, 25(3), 157–163. https://doi.org/10.1016/S07493797(03)00179-X
Friedman, J. H. (1988). Gait disorders in the elderly. Medicine & Health/Rhose Island, 91(5), 134–135.
Grabiner, P. C., Biswas, S. T., & Grabiner, M. D. (2001). Age-related changes in spatial and temporal gait variables. Archives of Physical Medicine and Rehabilitation, 82(1), 31–35. https://doi.org/10.1053/apmr.2001.18219
Graham, D. F., Carty, C. P., Lloyd, D. G., & Barrett, R. S. (2015). Biomechanical predictors of maximal balance recovery performance amongst community-dwelling older adults. Experimental Gerontology, 66(1), 39–46. https://doi.org/10.1016/j.exger.2015.04.006
Hortobágyi, T., Rider, P., Gruber, A. H., & DeVita, P. (2016). Age and muscle strength mediate the age-related biomechanical plasticity of gait. European Journal of Applied Physiology, 116(1), 805-814. https://doi.org/10.1007/s00421-015-3312-8
Jerome, G. J., Ko, S., Kauffman, D., Studenski, S. A., Ferrucci, L., & Simonsick, E. M. (2015). Gait characteristics associated with walking speed decline in older adults: results from the Baltimore Longitudinal Study of Aging. Archives of Gerontology and Geriatrics, 60(2), 239–243. https://doi.org/10.1016/j.archger.2015.01.007
Judge, J. O., Davis, R. B., & Ounpuu, S. (1996). Step length reductions in advanced age: the role of ankle and hip kinetics. The Journals of Gerontology, 51A(6), 303–312. https://doi.org/10.1093/gerona/51A.6.M303
Kang, H. G., & Dingwell, J. B. (2008). Separating the effects of age and walking speed on gait variability. Gait and Posture, 27(4), 572–577. https://doi.org/10.1016/j.gaitpost.2007.07.009
Kerrigan, D. C., Todd, M. K., Della Croce, U., Lipsitz, L. A., & Collins, J. J. (1998). Biomechanical gait alterations independent of speed in the healthy elderly: Evidence for specific limiting impairments. Archives of Physical Medicine and Rehabilitation, 79(3), 317–322. https://doi.org/10.1016/S0003-9993(98)90013-2
Kirtley, C., Whittle, M. W., & Jefferson, R. J. (1985). Influence of walking speed on gait parameters. Journal of Biomedical Engineering, 7(4), 282–288. https://doi.org/10.1016/0141-5425(85)90055-X
Lee, M., Kim, J., Son, J., & Kim, Y. (2013). Kinematic and kinetic analysis during forward and backward walking. Gait & Posture, 38(4), 674–678. https://doi.org/10.1016/j.gaitpost.2013.02.014
Leung, J., Smith, R., Harvey, L. A., Moseley, A. M., & Chapparo, J. (2014). The impact of simulated ankle plantarflexion contracture on the knee joint during stance phase of gait: a within-subject study. Clinical Biomechanics (Bristol, Avon), 29(4), 423–428. https://doi.org/10.1016/j.clinbiomech.2014.01.009
Liu, M. Q., Anderson, F. C., Pandy, M. G., & Delp, S. L. (2006). Muscles that support the body also modulate forward progression during walking. Journal of Biomechanics, 39(14), 2623–2630. https://doi.org/10.1016/j.jbiomech.2005.08.017
McGibbon, C. A., & Krebs, D. E. (2001). Age-related changes in lower trunk coordination and energy transfer during gait. Journal of Neurophysiology, 85(5), 1923–1931.
Mills, P. M., & Barrett, R. S. (2001). Swing phase mechanics of healthy young and elderly men. Human Movement Science, 20(4–5), 427–446. https://doi.org/10.1016/S0167-9457(01)00061-6
Moyer, B. E., Chambers, a J., Redfern, M. S., & Cham, R. (2006). Gait parameters as predictors of slip severity in younger and older adults. Ergonomics, 49(4), 329–343. https://doi.org/10.1080/00140130500478553
Mundermann, A., Dyrby, C. O., & Andriacchi, T. P. (2005). Secondary gait changes in patients with medial compartment knee osteoarthritis: Increased load at the ankle, knee, and hip during walking. Arthritis and Rheumatism, 52(9), 2835–2844. https://doi.org/10.1002/art.21262
Murray, M. P., Kory, R. C., & Clarckson, B. H. (1969). Walking patterns in healthy old men. Journal of Gerontology, 24(2), 169–178.
Norris, J. A., Granata, K. P., Mitros, M. R., Byrne, E. M., & Marsh, A. P. (2007). Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults. Gait & Posture, 25(4), 620–627. https://doi.org/10.1016/j.gaitpost.2006.07.002
Perry, J., & Burnfield, J. M. (2010). Gait analysis: Normal and pathological function. Journal of Sports Science & Medicine, 9(2), 353.
Prince, F., Corriveau, H., Hébert, R., & Winter, D. A. (1997). Gait in the elderly. Gait & Posture, 5(2), 128–135. https://doi.org/10.1016/S0966-6362(97)01118-1
Rueterbories, J., Spaich, E. G., Larsen, B., & Andersen, O. K. (2010). Methods for gait event detection and analysis in ambulatory systems. Medical Engineering & Physics, 32(6), 545–552. https://doi.org/10.1016/j.medengphy.2010.03.007
Schmitz, A., Silder, A., Heiderscheit, B., Mahoney, J., & Thelen, D. G. (2009). Differences in lower-extremity muscular activation during walking between healthy older and young adults. Journal of Electromyography and Kinesiology, 19(6), 1085–1091. https://doi.org/10.1016/j.jelekin.2008.10.008
Schulz, B. W. (2012). Healthy younger and older adults control foot placement to avoid small obstacles during gait primarily by modulating step width. Journal of Neuroengineering and Rehabilitation, 9(69), 1-9. https://doi.org/DOI: 10.1186/1743-0003-9-69
Silder, A., Heiderscheit, B., & Thelen, D. G. (2008). Active and passive contributions to joint kinetics during walking in older adults. Journal of Biomechanics, 41(7), 1520–1527. https://doi.org/10.1016/j.jbiomech.2008.02.016
Statistics Bureau of Japan. (2021). Statisical Handbook of Japan. Statistics Bureau, Ministry of Internal Affaird and Communications. https://www.iea.org/reports/japan-2021
Stenroth, L., Sillanpaa, E., McPhee, J. S., Narici, M. V., Gapeyeva, H., Paasuke, M., Barnouin, Y., Hogrel, J. Y., Butler-Browne, G., Bijlsma, A., Meskers, C. G. M., Maier, A. B., Finni, T., & Sipila, S. (2015). Plantarflexor muscle-tendon properties are associated with mobility in healthy older adults. Journals of Gerontology-Series A Biological Sciences and Medical Sciences, 70(8), 996–1002. https://doi.org/10.1093/gerona/glv011
Thorp, L. E., Sumner, D. R., Block, J. A., Moisio, K. C., Shott, S., & Wimmer, M. A. (2006). Knee joint loading differs in individuals with mild compared with moderate medial knee osteoarthritis. Arthritis and Rheumatism, 54(12), 3842–3849. https://doi.org/10.1002/art.22247
Van Iersel, M. B., Ribbers, H., Munneke, M., Borm, G. F., & Rikkert, M. G. O. (2007). The effect of cognitive dual tasks on balance during walking in physically fit elderly people. Archives of Physical Medicine and Rehabilitation, 88(2), 187–191. https://doi.org/10.1016/j.apmr.2006.10.031
Vieira, E. R., Lim, H.-H., Brunt, D., Hallal, C. Z., Kinsey, L., Errington, L., & Gonçalves, M. (2015). Temporo-spatial gait parameters during street crossing conditions: a comparison between younger and older adults. Gait & Posture, 41(2), 510–515. https://doi.org/10.1016/j.gaitpost.2014.12.001
Watanabe, K., Kouzaki, M., & Moritani, T. (2015). Regional neuromuscular regulation within human rectus femoris muscle during gait in young and elderly men. Journal of Biomechanics, 49(1), 19–25. https://doi.org/10.1016/j.jbiomech.2015.11.010
Watelain, E., Barbier, F., Allard, P., Thevenon, A., & Anguè, J. C. (2000). Gait pattern classification of healthy elderly men based on biomechanical data. Archives of Physical Medicine and Rehabilitation, 81(5), 579–586. https://doi.org/10.1053/mr.2000.4415
Winter, D. A., Patla, A. E., Frank, J. S., & Walt, S. E. (1990). Biomechanical walking pattern changes in the fit and healthy elderly. Physical Therapy, 70(6), 340–347. https://doi.org/10.1016/0966-6362(96)82849-9
DOI: http://dx.doi.org/10.24042/jipfalbiruni.v11i1.11458
Refbacks
- There are currently no refbacks.
Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.