Investigating Learners' Conceptual Progression on pH of Solution, Acid-Base Titration, and Buffer Solutions

Eldat Wira Santa, Sumari Sumari, Hadi Nur, Nur Candra Eka Setiawan, Muntholib Muntholib

Abstract


This study aims to explore the development of understanding of the concepts of pH, acid-base titration, and buffer solutions among 11th-grade students and 2nd- and 4th-semester university students in chemistry education. It employs a cross-sectional design using open-ended questions and interview guidelines to collect data from 153 11th-grade students, 30 second-semester university students, and 40 fourth-semester university students. The open-ended questionnaire consists of 9 items (2 questions on the pH of solutions, 4 questions on acid-base indicators and titration, and 3 questions on buffer solutions and salt hydrolysis) on a continuous scale, with an Aiken's kappa validity of 0.61 (substantial agreement) and a Cronbach's Alpha reliability (KR-20) of 0.75 (acceptable). The results indicate that scientific understanding of pH concepts, such as the pH of solutions, acid-base titration, and buffer solutions, improves with education. However, comprehension of complex concepts remains low. The study's implications highlight the need for curriculum development and the selection and implementation of learning strategies that enable students to learn in a structured, gradual, and coherent manner. Curriculum development should map out subject matter, distinguish essential from non-essential content, and organize material from simple and essential topics to more complex and non-essential ones.

Keywords


Acid-base titration; Buffer solution; Learning progression; Model mental; pH of solution

References


Adadan, E., & Savasci, F. (2012). An analysis of 16-17-year-old students’ understanding of solution chemistry concepts using a two-tier diagnostic instrument. International Journal of Science Education, 34(4), 513–544. https://doi.org/10.1080/09500693.2011.636084

Alonzo, A. C., Wooten, M. M., & Christensen, J. (2022). Learning progressions as a simplified model: Examining teachers’ reported uses to inform classroom assessment practices. Science Education, 106(4), 852–889. https://doi.org/10.1002/sce.21713

Amala, F., & Habiddin, H. (2022). Pemahaman konsep dalam topik sifat asam basa larutan garam: studi pada siswa SMA di Blitar. Jurnal Zarah, 10(2), 91–100.

Amalia, F. R., Ibnu, S., Widarti, H. R., & Wuni, H. (2018). Students’ mental models of acid and base concepts taught using the cognitive apprenticeship learning model. Jurnal Pendidikan IPA Indonesia, 7(2), 187–192. https://doi.org/10.15294/jpii.v7i2.14264

Anderson, L. W., Krathwohl Peter W Airasian, D. R., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, J., & Wittrock, M. C. (2001). A Taxonomy for Learning, Teaching, And Assessing. A Revision 0f Bloom’s Taxonomy Of Educational Objectives. Longman. https://www.uky.edu/~rsand1/china2018/texts/Anderson-Krathwohl - A taxonomy for learning teaching and assessing.pdf

Arocena, M. (2022). A simple theoretical, quantitative approach to help understand the titration of weak acids and bases. Chemistry Teacher International, 4(1), 47–54. https://doi.org/10.1515/cti-2021-0021

Bretz, S. L., & McClary, L. (2015). Students’ understandings of acid strength: How meaningful is reliability when measuring alternative conceptions? Journal of Chemical Education, 92(2), 212–219. https://doi.org/10.1021/ed5005195

Cooper, M., Kouyoumdjian, H., & Underwood, S. M. (2016). Investigating students’ reasoning about acid–base reactions. Journal of Chemical Education, 93, 1703–1712. https://doi.org/10.1021/ACS.JCHEMED.6B00417

Cooper, M. M., Kouyoumdjian, H., & Underwood, S. M. (2016). Investigating students’ reasoning about acid-base reactions. Journal of Chemical Education, 93(10). https://doi.org/10.1021/acs.jchemed.6b00417

Cyril, N., Coll, S., Ketpichainarong, W., & Rajoo, M. (2022). Blended learning in acids and bases: an alternative to science teaching for lower secondary schools. SN Social Sciences, 2. https://doi.org/10.1007/s43545-022-00447-z

Demirdöğen, B., Nelsen, I., & Lewis, S. E. (2023). Organic chemistry students’ use of stability in mental models on acid and base strength. Chemistry Education Research and Practice, 24, 1127–1141. https://doi.org/10.1039/d3rp00049d

Dood, A. J., & Watts, F. M. (2023). Students’ strategies, struggles, and successes with mechanism problem solving in organic chemistry: A scoping review of the research literature. Journal of Chemical Education, 100(1), 53–68. https://doi.org/10.1021/acs.jchemed.2c00572

Elvinawati, E., Rohiat, S., & Solikhin, F. (2022). Identifikasi miskonsepsi mahasiswa dalam mata kuliah kimia sekolah II Pada materi asam basa. alotrop, 6(1), 10–14. https://doi.org/10.33369/atp.v6i1.20303

Frost, S. J. H., Yik, B. J., Dood, A. J., de Arellano, D. C.-R., Fields, K. B., & Raker, J. (2023). Evaluating electrophile and nucleophile understanding: a large-scale study of learners’ explanations of reaction mechanisms. Chemistry Education Research and Practice, 24, 706–722. https://doi.org/10.1039/d2rp00327a

Gültepe, N. (2021). Pre-service chemistry teachers’ understanding about equilibria in acid-base solutions. Pedagogical Research, 6(4), 1–11. https://doi.org/10.29333/pr/11349

Hikaya, N., Lukum, & Botutihe. (2018). Studi komparasi kemampuan pemahaman konseptual, algoritmik, dan grafis mahasiswa jurusan kimia pada materi asam basa. Jurnal Entropi, 1(441412007), 95–102.

Jensen, J. D. (2013). Students’ understandings of acid-base reactions investigated through their classification schemes and the acid-base reactions concept inventory. 1–209. https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:miami1365611297

Jiménez-Liso, M. R., López-Banet, L., & Dillon, J. (2020). Changing how we teach acid-base chemistry. Science & Education, 29(5), 1291–1315. https://doi.org/10.1007/s11191-020-00142-6

Jin, H., Mikeska, J. N., Hokayem, H., & Mavronikolas, E. (2019). Toward coherence in curriculum, instruction, and assessment: A review of learning progression literature. Science Education, 103(5), 1206–1234. https://doi.org/10.1002/sce.21525

Jones, N. A., Ross, H., Lynam, T., Perez, P., & Leitch, A. (2011). Mental models: An interdisciplinary synthesis of theory and methods. Ecology and Society, 16(1). https://doi.org/10.5751/ES-03802-160146

Krathwohl, A. and. (2002). A revision of bloom ’ s taxonomy : An overview. Theory into Practice, 41(4), 212–219.

Krebs, R. E., Rost, M., & Lembens, A. (2022). „Protons as the main drivers of a chemical reaction?” – educational reconstruction of the Brønsted-Lowry acid-base concept for upper secondary school. CHEMKON, 30(8), 334–340. https://doi.org/10.1002/ckon.202200045

Krebs, R. E., Rost, M., & Lembens, A. (2023). Developing and evaluating a multiple-choice knowledge test about Brønsted-Lowry acid-base reactions for upper secondary school students. Chemistry Teacher International, 5, 177–188. https://doi.org/10.1515/cti-2022-0038

Lin, J.-W., Chiu, M.-H., & Liang, J.-C. (2016). Exploring mental models and causes of students’ misconceptions in acids and bases. National Taiwan Normal University, January, 1–12. https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf

Lin, J. W., & Chiu, M. H. (2007). Exploring the characteristics and diverse sources of students’ mental models of acids and bases. International Journal of Science Education, 29(6), 771–803. https://doi.org/10.1080/09500690600855559

López-Banet, L., Aguilera, D., Jiménez-Liso, M. R., & Perales-Palacios, F. J. (2021). Emotional and cognitive preservice science teachers’ engagement while living a model-based inquiry science technology engineering mathematics sequence about acid-base. Frontiers in Psychology, 12(October). https://doi.org/10.3389/fpsyg.2021.719648

Mubarokah, F. D., Mulyani, S., & Indriyanti, N. Y. (2018). Identifying students’ misconceptions of acid-base concepts using a three-tier diagnostic test: A case of Indonesia and Thailand. Journal of Turkish Science Education, 15(Special Issue), 51–58. https://doi.org/10.12973/tused.10256a

Muntholib, D., Mayangsari, J., Pratiwi, Y. N., Muchson, D., Joharmawan, R., Yahmin, D., & Rahayu, S. (2018). Development of simple multiple-choice diagnostic test of acid-base concepts to identify studentsr alternative conceptions. 218(ICoMSE 2017), 251–268. https://doi.org/10.2991/icomse-17.2018.45

Muntholib, Mauliya, A. H., Utomo, Y., & Ibnu, M. S. (2020). Assessing high school student’s chemical literacy on salt hydrolysis. IOP Conference Series: Earth and Environmental Science, 456(1). https://doi.org/10.1088/1755-1315/456/1/012065

Net, W. W. W. P., Suparman, A. R., Rohaeti, E., Wening, S., Gunung, J., & Amban, S. (2024). Student misconception in chemistry: A systematic literature review. Pegem Journal of Education and Instruction, 14(2), 238–252. https://doi.org/10.47750/pegegog.14.02.28

Orgill, M. K., & Sutherland, A. (2008). Undergraduate chemistry students’ perceptions of and misconceptions about buffers and buffer problems. Chemistry Education Research and Practice, 9(2), 131–143. https://doi.org/10.1039/b806229n

Park, C., Sungki, K., Choi, H., & Seounghey, P. (2019). Exploring learning progression of logical thinking in acid and base chemical reactions. Journal of The Korean Chemical Society, 63, 376–386. https://doi.org/10.5012/JKCS.2019.63.5.376

Permendikbud. (2016). Permendikbud RI Nomor 21 Tahun 2016 Tentang Standar Isi Pendidikan Dasar dan Menengah. JDIH Kemendikbud, 1–168.

Reed, C. R., & Wolfson, A. J. (2019). Learning progressions as a pedagogical tool for instructors. The FASEB Journal, 33(S1), 32–40. https://doi.org/10.1096/fasebj.2019.33.1_supplement.456.7

Reed, C. R., & Wolfson, A. J. (2021). Are Learning progressions a useful pedagogical tool for instructors? Journal of College Science Teaching, 51(2), 32–40. https://doi.org/10.1080/0047231X.2021.12290546

Romine, W. L., Todd, A. N., & Clark, T. B. (2016). How do undergraduate students conceptualize acid–base chemistry? Measurement of a concept progression. Science Education, 100(6), 1150–1183. https://doi.org/10.1002/sce.21240

Salame, I. I., Montero, A., & Eschweiler, D. (2022). Examining some of the students’ challenges and alternative conceptions in learning about acid-base titrations. International Journal of Chemistry Education Research, 6, 1–10. https://doi.org/10.20885/ijcer.vol6.iss1.art1

Scott, E. E., Wenderoth, M. P., & Doherty, J. H. (2019). Learning progressions: An empirically grounded, learner-centered framework to guide biology instruction. CBE Life Sciences Education, 18(4), 1–11. https://doi.org/10.1187/cbe.19-03-0059

Sodanango, P. Y., Munzil, M., & Sumari, S. (2021). Analisis model mental peserta didik SMA dalam memahami konsep laju reaksi. Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan, 6(10), 1543. https://doi.org/10.17977/jptpp.v6i10.15048

Tümay, H. (2016). Emergence, learning difficulties, and misconceptions in chemistry undergraduate students’ conceptualizations of acid strength. Science and Education, 25(1–2), 21–46. https://doi.org/10.1007/s11191-015-9799-x

Wan, Y. (2014). Assessing college students understanding of acid base chemistry concept [Clemson University]. In All Dissertations. https://tigerprints.clemson.edu/all_dissertations/1394

Wattanakasiwich, P., Taleab, P., Sharma, M. D., & Johnston, I. D. (2013). Development and implementation of a conceptual survey in thermodynamics. International Journal of Innovation in Science and Mathematics Education, 21(1), 29–53.

Yang, Y., Liu, Y.-X., Song, X.-H., Yao, J.-X., & Guo, Y.-Y. (2023). A tale of two progressions: students’ learning progression of the particle nature of matter and teachers’ perception on the progression. Disciplinary and Interdisciplinary Science Education Research, 5(1). https://doi.org/10.1186/s43031-023-00085-2




DOI: http://dx.doi.org/10.24042/tadris.v9i2.23169

Refbacks

  • There are currently no refbacks.




Creative Commons License

Tadris: Jurnal Keguruan dan Ilmu Tarbiyah is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licensep-ISSN 2301-7562e-ISSN 2579-7964