Odd Harmonious Labeling on Edge Amalgamation from Double Quadrilateral Graphs

Fery Firmansah, Tasari Tasari

Abstract


A graph that has odd harmonious labeling properties is called an odd harmonious graph. The purpose of this research is to obtain a new class graphs construction which is a family of odd harmonious graphs. The research method used consisted of several stages, namely research preparation, research investigation and verifivation of research results. The results of this study, we will give a line amalgamation construction of n double quadrilateral graphs DQ, denoted by *DQ(n) with n>= 1 and graph obtained by connecting between two graphs *DQ(n) with line graph L2, denoted by *(DQ(n),L2,DQ(n)). It has  further been proven that *DQ(n) and *(DQ(n),L2,DQ(n)) have odd harmonious labeling properties, such that all of them are odd harmonious graphs.


Keywords


double quadrilateral, graph labeling, line amalgamation, odd harmonious graph

Full Text:

PDF

References


Firmansah, F. (2016). Pelabelan Harmonis Ganjil pada Gabungan Graf Ular dan Graf Ular Berlipat. Konferensi Nasional Penelitian Matematika Dan Pembelajarannya (KNPMP I)an , 809–818. Retrieved from https://publikasiilmiah.ums.ac.id/bitstream/handle/11617/7026/88_4_Makalah Rev Fery Firmansah.pdf?sequence=1&isAllowed=y

Firmansah, F. (2017). The Odd Harmonious Labeling on Variation of the Double Quadrilateral Windmill Graphs. Jurnal Ilmu Dasar, 18(2), 109. https://doi.org/10.19184/jid.v18i2.5648

Firmansah, F., & Syaifuddin, M. W. (2018). Pelabelan Harmonis Ganjil pada Amalgamasi Graf Kincir Angin Double Quadrilateral. Seminar Nasional Pendidikan Matematika Ahmad Dahlan, 6. Retrieved from http://seminar.uad.ac.id/index.php/sendikmad/article/view/402

Firmansah, F., & Wahid Syaifuddin, M. (2018). Pelabelan Harmonis Ganjil pada Amalgamasi Graf Kincir Angin Belanda. Fibonacci Jurnal Matematika Dan Pendidikan Matematika, 4(4), 37–46. https://doi.org/https://doi.org/10.24853/fbc.4.1.37-46

Firmansah, F., & Yuwono, M. R. (2017a). Odd Harmonious Labeling on Pleated of the Dutch Windmill Graphs. Cauchy Jurnal Matematika Murni Dan Aplikasi, 4(4), 161–166. https://doi.org/10.18860/ca.v4i4.4043

Firmansah, F., & Yuwono, M. R. (2017b). Pelabelan Harmonis Ganjil pada Kelas Graf Baru Hasil Operasi Cartesian Product. Jurnal Matematika Mantik, 3(2), 87–95. https://doi.org/10.15642/mantik.2017.3.2.87-95

Gallian, J. A. (2019). A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics, 18.

Jeyanthi, P., Philo, S., & Siddiqui, M. K. (2019). Odd harmonious labeling of super subdivision graphs. Proyecciones, 38(1), 1–11. https://doi.org/10.4067/S0716-09172019000100001

Jeyanthi, P., Philo, S., & Youssef, M. Z. (2019). Odd harmonious labeling of grid graphs. Proyecciones, 38(3), 412–416. https://doi.org/10.22199/issn.0717-6279-2019-03-0027

Liang, Z.-H., & Bai, Z.-L. (2009). On the odd harmonious graphs with applications. Journal of Applied Mathematics and Computing, 29(1–2), 105–116. https://doi.org/10.1007/s12190-008-0101-0

Saputri, G. A., Sugeng, K. A., & Froncek, D. (2013). The odd harmonious labeling of dumbbell and generalized prism graphs. AKCE International Journal of Graphs and Combinatorics, 10(2), 221–228.




DOI: http://dx.doi.org/10.24042/djm.v3i1.5712

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.