Program Linier Parametrik

Adolf T Simatupang

Abstract


This study aims to discuss a linear program problem where its constants can change, If a constant for a linear program problem is changed, then we don't need to count from the beginning again. Next, we will examine the properties of the objective function as a result of changes in these constants. In this discussion determine the non-negative "critical value" which provides the optimal solution to the problem of parametric linear programs. Searching for critical values in parametric linear programs is done by the matrix version method.

Keywords


Constraint; Critical Value; Objective Function; Optimal Solution; Parametric

Full Text:

PDF

References


Ayres, F. (1984). Matriks. Bandung: ITB.

Dhawan, S. (1975). Linier Programming. New Delhi.

Hadly, G. (1962). Linier Programming. Canada.

Indriani, D., Suyitno, H., & Mashuri. (2013). Analisis Metode Karmarkar Untuk Menyelesaikan Masalah Program Linier. Jurnal Mipa, 36(1), 98–106.

Suwirmayanti, N. L. G. P. (2017). Aplikasi Optimasi Produksi Menggunakan Metode Simpleks Berbasis WEB. Techno Com, 17(1), 61–69.

Taha, H. A. (2003). Operations Research An Introduction. New York: Macmillan Inc.

Windarti, T. (2013). Pemodelan Optimalisasi Produksi Untuk Memaksimalkan Keuntungan Dengan Menggunakan Metode Program Linier. Spektrum Industri : Jurnal Ilmu Pengetahuan Dan Penerapan Teknik Industri, 11(2), 148–159.




DOI: http://dx.doi.org/10.24042/djm.v2i1.4184

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.