Odd harmonious labeling on the union of flower graphs
Abstract
Applications of graph labeling in the fields of communication network addressing, database management, secret sharing schemes, and cryptology. Graphs that satisfy the odd harmonious labeling property are called odd harmonious graphs. The purposes of the research are to obtain the construction of the union of zinnia flower graphs, the union of double quadrilateral flower graphs, the rosella flower graphs, and the union of rosella flower graphs. The research method consists of literature study, graph class construction, graph labeling construction, theorem construction, and proof. The result of the research proves that the union of the zinnia flower graph, the double quadrilateral flower graph, the rosella flower graph, and the union of the rosella flower graph satisfies the odd harmonious labeling property. Thus, the novelty of this research is that the properties of the new graph class of odd harmonious graphs are obtained.
Keywords
Full Text:
PDFReferences
Abdel-Aal, M. E. (2013). Odd harmonious labelings of cyclic snakes. International Journal on Applications of Graph Theory In Wireless Ad Hoc Networks And Sensor Networks, 5(3), 1–11. https://doi.org/10.5121/jgraphoc.2013.5301
Abdel-Aal, M. E., & Seoud, M. A. (2016). Further results on odd harmonious graphs. International Journal on Applications of Graph Theory In Wireless Ad Hoc Networks And Sensor Networks, 8(3/4), 01–14. https://doi.org/10.5121/jgraphoc.2016.8401
Febriana, F., & Sugeng, K. A. (2020). Odd harmonious labeling on squid graph and double squid graph. Journal of Physics: Conference Series, 1538(1), 012015. https://doi.org/10.1088/1742-6596/1538/1/012015
Firmansah, F. (2017). The odd harmonious labeling on variation of the double quadrilateral windmill graphs. Jurnal ILMU DASAR, 18(2), 109. https://doi.org/10.19184/jid.v18i2.5648
Firmansah, F. (2020). Pelabelan harmonis ganjil pada graf bunga double quadrilateral. JURNAL ILMIAH SAINS, 20(1), 12. https://doi.org/10.35799/jis.20.1.2020.27278
Firmansah, F. (2022). Odd harmonious labeling on some string graph classes. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 16(1), 315–322. https://doi.org/10.30598/barekengvol16iss1pp313-320
Firmansah, F. (2023). The odd harmonious labeling of layered graphs. JTAM (Jurnal Teori Dan Aplikasi Matematika), 7(2), 339. https://doi.org/10.31764/jtam.v7i2.12506
Firmansah, F., & Giyarti, W. (2021). Odd harmonious labeling on the amalgamation of the generalized double quadrilateral windmill graph. Desimal: Jurnal Matematika, 4(3). https://doi.org/10.24042/djm.v4i3.10823
Firmansah, F., Tasari, T., & Yuwono, M. R. (2023). Odd harmonious labeling of the zinnia flower graphs. JURNAL ILMIAH SAINS, 40–46. https://doi.org/10.35799/jis.v23i1.46771
Firmansah, F., & Yuwono, M. R. (2017a). Odd harmonious labeling on pleated of the dutch windmill graphs. CAUCHY: Jurnal Matematika Murni Dan Aplikasi, 4(4), 161–166. https://doi.org/10.18860/ca.v4i4.4043
Firmansah, F., & Yuwono, M. R. (2017b). Pelabelan harmonis ganjil pada kelas graf baru hasil operasi cartesian product. Jurnal Matematika “MANTIK,” 3(2), 87–95. https://doi.org/10.15642/mantik.2017.3.2.87-95
Gallian, J. A. (2022). A dynamic survey of graph labeling. The Electronic Journal of Combinatorics, 1000. https://doi.org/10.37236/11668
Hafez, H. M., El-Shanawany, R., & Atik, A. A. E. (2023). Odd harmonious labeling of the converse skew product of graphs. Bulletin of the Institute of Combinatorics and Its Applications, 98.
Jeyanthi, P., & Philo, S. (2015). Odd harmonious labeling of some new families of graphs. Electronic Notes in Discrete Mathematics, 48, 165–168. https://doi.org/10.1016/j.endm.2015.05.024
Jeyanthi, P., & Philo, S. (2016). Odd harmonious labeling of some cycle related graphs. Proyecciones (Antofagasta), 35(1), 85–98. https://doi.org/10.4067/S0716-09172016000100006
Jeyanthi, P., & Philo, S. (2019). Odd harmonious labeling of subdivided shell graphs. International Journal of Computer Sciences and Engineering Open Access Research Paper, (5). https://doi.org/10.26438/ijcse/v7si5.7780
Jeyanthi, P., Philo, S., & Youssef, M. Z. (2019). Odd harmonious labeling of grid graphs. Proyecciones (Antofagasta), 38(3), 411–428. https://doi.org/10.22199/issn.0717-6279-2019-03-0027
Kolo, D., Ginting, K. Br., & Putra, G. L. (2023). Odd harmonic labeling on Cm,n ⊵e C4 graph. Jurnal Diferensial, 5(1), 22–28. https://doi.org/10.35508/jd.v5i1.9824
Lasim, A., Halikin, I., & Wijaya, K. (2022). The harmonious, odd harmonious, and even harmonious labeling. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 16(4), 1131–1138. https://doi.org/10.30598/barekengvol16iss4pp1131-1138
Liang, Z.-H., & Bai, Z.-L. (2009). On the odd harmonious graphs with applications. Journal of Applied Mathematics and Computing, 29(1–2), 105–116. https://doi.org/10.1007/s12190-008-0101-0
Philo, S., & Jeyanthi, P. (2021). Odd harmonious labeling of line and disjoint union of graphs. Chinese Journal of Mathematical Sciences, 1(1), 61–68.
Pujiwati, D. A., Halikin, I., & Wijaya, K. (2021). Odd harmonious labeling of two graphs containing star. 020019. https://doi.org/10.1063/5.0039644
Saputri, G. A., Sugeng, K. A., & Froncek, D. (2013). The odd harmonious labeling of dumbbell and generalized prism graphs. AKCE International Journal of Graphs and Combinatorics, 10(2).
Sarasvati, S. S., Halikin, I., & Wijaya, K. (2021). Odd harmonious labeling of pn c4 and pn d2(c4). Indonesian Journal of Combinatorics, 5(2), 94. https://doi.org/10.19184/ijc.2021.5.2.5
Seoud, M. A. A., & Hafez, H. M. (2018). Odd harmonious and strongly odd harmonious graphs. Kyungpook Mathematical Journal, 58(4). https://doi.org/10.5666/KMJ.2018.58.4.747
Sugeng, K. A., Surip, & Rismayati. (2019). On odd harmonious labeling of m-shadow of cycle, gear with pendant and shuriken graphs. 040015. https://doi.org/10.1063/1.5139141
DOI: http://dx.doi.org/10.24042/djm.v7i3.24612
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Desimal: Jurnal Matematika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.