Optimization of bantuan pangan non tunai (BPNT) distribution using bilevel linear programming in siantar martoba subdistrict pematang siantar
Abstract
Bantuan Pangan Non Tunai (BPNT) is assistance that is in the second decile; in other words, KPMs who are in the first decile will also get assistance. A limited quota of BPNT recipients will result in people in categories such as the elderly group not getting this assistance. This problem arises because there is a significant increase in the population of the elderly group every year. The research method uses secondary data from data sources, namely the social service office, to develop a bilevel model for the problem of distributing food aid on cash by regularizing the bilevel model so that a linear programming model with a single objective function is obtained. In the regularization stage, the gradient descent method is used to find the optimal value of the penalty parameter. From the calculation results of the regularized model, it is found that the values of the variables x_1= 2956, x_2= 583, and x_3 = 250 have a value of Z = 3804. This bilevel linear programming model approach provides a strong basis for planning and decision-making related to the distribution of Non-Cash Food Assistance (BPNT) in Siantar Martoba Subdistrict. Therefore, it can be assumed that this bilevel linear programming approach can be used as a guideline for related agencies in allocating resources efficiently.
Keywords
Full Text:
PDFReferences
Abbassi, M., Chaabani, A., Said, L. Ben, & Absi, N. (2020). Bi-level multi-objective combinatorial optimization using reference approximation of the lower level reaction. Procedia Computer Science, 176. https://doi.org/10.1016/j.procs.2020.09.246
Ariyanti, N., & Azizah, N. L. (2019). Buku ajar mata kuliah teknik optimasi. UMSIDA PRESS.
Badan Pusat Statistika. (2023). Persentase penduduk miskin september 2022. Retrieved from https://www.bps.go.id/id/pressrelease/2023/01/16/2015/persentase-penduduk-miskin-september-2022-naik-menjadi-9-57-persen.html
Dempe, S. (2020). Springer optimization and its applications 161 bilevel optimization advances and next challenges. Retrieved from http://www.springer.com/series/7393
Ehrhardt, M. J., Gazzola, S., & Scott, S. J. (2023). On optimal regularization parameters via bilevel learning.
Erfianti, R., & Muhaijir, M. N. (2019). Optimasi produksi hijab menggunakan program linear multi objective fuzzy. Jambura Journal of Mathematics, 2(1). https://doi.org/10.34312/jjom.v2i1.2406
Hadi, A., Soewarsono, Lan, T. J., & Jati, W. R. (2019). Tinjauan kritis ketahanan sosial masyarakat miskin perkotaan dan perdesaan: Ruang sosial, kebijakan, dan pola kerentanan sosial. Lembaga Ilmu Pengetahuan Indonesia (LIPI).
Iskandar, A. (2012). Paradigma baru benchmarking kemiskinan. IPB Press.
Jamhuri, M., & Subiono, S. (2021). Penentuan nilai awal iterasi pada masalah pendugaan parameter regresi taklinier. Limits: Journal of Mathematics and Its Applications, 18(2). https://doi.org/10.12962/limits.v18i2.8297
Lumbantoruan, J. (2020). Buku materi pembelajaran pemograman linear. In Kaos GL Dergisi (Vol. 8).
Mashayekh, S., Stadler, M., Cardoso, G., & Heleno, M. (2017). A mixed integer linear programming approach for optimal der portfolio, sizing, and placement in multi-energy microgrids. Applied Energy, 187. https://doi.org/10.1016/j.apenergy.2016.11.020
Nabila, K., Suharso, P., & Hartanto, W. (2021). Implementasi program bantuan pangan non tunai (bpnt) di desa paleran kecamatan umbulsari kabupaten jember. JURNAL PENDIDIKAN EKONOMI: Jurnal Ilmiah Ilmu Pendidikan, Ilmu Ekonomi Dan Ilmu Sosial, 15(2).
Shen, H., & Chen, T. (2023). On penalty-based bilevel gradient descent method. Proceedings of Machine Learning Research, 202.
Sinha, A., Soun, T., & Deb, K. (2019). Using karush-kuhn-tucker proximity measure for solving bilevel optimization problems. Swarm and Evolutionary Computation, 44, 496–510. https://doi.org/10.1016/j.swevo.2018.06.004
Wungguli, D., Silalahi, B. P., & Guritman, S. (2015). Metode steepest descent dengan ukuran langkah baru untuk pengoptimuman nirkendala. Journal of Mathematics and Its Applications, 14(1). https://doi.org/10.29244/jmap.14.1.1-10
Zhang, T., & Li, X. (2018). The backpropagation artificial neural network based on elite particle swam optimization algorithm for stochastic linear bilevel programming problem. Mathematical Problems in Engineering, 2018. https://doi.org/10.1155/2018/1626182
Ziliaskopoulos, K., & Papalamprou, K. (2022). A bilevel linear programming model for developing a subsidy policy to minimize the environmental impact of the agricultural sector. Sustainability (Switzerland), 14(13). https://doi.org/10.3390/su14137651
DOI: http://dx.doi.org/10.24042/djm.v7i1.21868
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Desimal: Jurnal Matematika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.