Semicontinuous endowment insurance premium valuation using quadratic fractional age assumptions
Abstract
The classic assumptions used to calculate fractional ages in valuing insurance premiums with payouts made immediately after death result in discontinuous probabilities of immediate death at integer ages because the assumption only applies to a 1-year time interval, specifically . The new assumption, namely the quadratic fractional age assumption, has successfully introduced continuity at integer ages. This study discusses the conditions for applying the quadratic fractional age assumption and its influence on the calculation of semi-continuous dual-purpose insurance premiums, where the policyholder's beneficiaries receive the sum assured if the insured individual passes away before the contract ends or receive protection if the policyholder survives until the end of the contract, with premium payments made on a monthly basis. Simulation results indicate that not all mortality tables meet the requirements for the quadratic fractional age assumption, where the value falls between . Only the Commissioners Standard Ordinary Table 1958 meets this criterion. Monthly premiums calculated using the quadratic fractional age assumption yield smaller values compared to premiums calculated using the constant force of mortality assumption and the uniform distribution of death assumption.
Keywords
Full Text:
PDFReferences
Bowers, N. L., Gerber, H. U., Hickman, J. C., Jones, D. A., & Nesbitt, C. J. (1997). Actuarial Mathematics (2nd ed.). Society of Actuaries.
Brillinger, D. R. (1961). A justification of some common laws of mortality. Transactions of Society of Actuaries, 13(36AB), 116–119.
Broffitt, J. D. (1984). Maximum likelihood alternative of actuarial estimators of mortality rates. Transaction of The Society of Actuaries, 36, 77–122.
Dickson, D. C. M., Hardy, M. R., & Waters, H. R. (2019). Actuarial mathematics for life contingent risks. In Actuarial Mathematics for Life Contingent Risks. https://doi.org/10.1017/9781108784184
Friedler, L. M. (1986). Actuarial mathematics. by newton l. bowers, jr., hans u. gerber, james c. hickman, donald a. jones, cecil j. nesbitt. The American Mathematical Monthly, 93(6), 489–491. https://doi.org/10.1080/00029890.1986.11971867
Frostig, E. (2002). Comparison between future lifetime distribution and its approximation. North American Actuarial Journal, 6(2), 11–17. https://doi.org/10.1080/10920277.2002.10596040
Frostig, E. (2003). Properties of the power family of fractional age approximations. Insurance: Mathematics and Economics, 33(1), 163–171. https://doi.org/10.1016/S0167-6687(03)00151-3
Goldstein, J. R., & Lee, R. D. (2020). Demographic perspectives on the mortality of covid-19 and other epidemics. Proceedings of the National Academy of Sciences, 117(36), 22035–22041. https://doi.org/10.1073/pnas.2006392117
Hoem, J. M. (1984). A flaw in actuarial exposed-to-risk theory. Scandinavian Actuarial Journal, 1984(3), 187–194. https://doi.org/10.1080/03461238.1984.10413766
Hossain, S. A. (2011). Quadratic fractional age assumption revisited. Lifetime Data Analysis, 17(2), 321–332. https://doi.org/10.1007/s10985-010-9153-1
Jones, B. L., & Mereu, J. A. (2000). A family of fractional age assumptions. Insurance: Mathematics and Economics, 27(2), 261–276. https://doi.org/10.1016/S0167-6687(00)00052-4
Jones, B. L., & Mereu, J. A. (2002). A critique of fractional age assumptions. Insurance: Mathematics and Economics, 30(3), 363–370. https://doi.org/10.1016/S0167-6687(02)00104-X
Jordan, C. W. (1967). Life contingencies (2nd ed.). Society of Actuaries.
Li, S., Zhao, X., & Guo, N. (2013). Fractional mortality rate based on rational interpolating method and its application in actuarial science. Quality & Quantity, 47(2), 791–802. https://doi.org/10.1007/s11135-011-9564-4
London, D. (1997). Survival models and their estimation (3rd ed.). ACTEX Publications.
Narlitasari, N. T., Rioke, R., Setyani, W., Nurbayti, A., & Prabowo, A. (2022). Construction of mortality tables using uniformly distribution of death and constant force based approaches in tmi 2019. International Journal of Quantitative Research and Modeling, 3(4), 138–160. https://doi.org/10.46336/ijqrm.v3i4.356
Ocktaviani, R. T. N., & Effendie, A. R. (2015). Interpolasi tabel mortalita dengan asumsi usia pecahan kuadratik. Universitas Gadjah Mada.
Society of Actuaries. (2012). 1958 commissioners standard ordinary (cso) mortality. Retrieved from https://mort.soa.org/
Utomo, H. (2021). Perbandingan tabel mortalita indonesia dan tabel mortalita cso menggunakan uji mann-whitney dan uji kruskal-wallis. Syntax Literate ; Jurnal Ilmiah Indonesia, 6(3), 1210. https://doi.org/10.36418/syntax-literate.v6i3.2364
Willmot, G. E. (1997). Statistical independence and fractional age assumptions. North American Actuarial Journal, 1(1), 84–90. https://doi.org/10.1080/10920277.1997.10595597
DOI: http://dx.doi.org/10.24042/djm.v7i1.21113
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Desimal: Jurnal Matematika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.