The model of goods delivery using multi depot vehicle routing problem at PT X

Eko Sulistyono, Vitri Aprilla Handayani, Widya Reza, Dian Islamiati

Abstract


Vehicle Routing Problem (VRP) is a problem in shipping that focuses on distributing goods from a depot to customers. There are several developments from VRP, one of which is the Multi Depot Vehicle Routing Problem (MDVRP). The MDVRP model has the same goal as the VRP, which is to minimize travel costs. The difference between VRP and MDVRP depends on the depot used. In VRP, only one depot is used. Whereas in MDVRP, there is more than one depot used. This research discussed the delivery of goods to two depots. The aim of this research is to form a model for shipping goods using two depots, determine the total travel cost, and determine the optimal route to delivery of the goods. The data used in this research is secondary data. The result of this research is that the model for the MDVRP aims to minimize the total travel cost by using two depots and serving 10 customer locations. The total cost of the trip is IDR 390,000, with a total distance traveled as far as 300 km, and the optimal routes for delivering goods involve each depot making two trips. The first depot covers distances of 57 km and 48 km, and the second depot covers distances of 92 km and 103 km.


Full Text:

PDF

References


Agatz, N., Bouman, P., & Schmidt, M. (2018). Optimization approaches for the traveling salesman problem with drone. Transportation Science, 52(4), 965–981. https://doi.org/10.1287/trsc.2017.0791

Alfiansah, A. S., & Abdulrahim, M. (2023). Analisis penentuan rute pengiriman produk styrofoam untuk meminimalkan biaya pengiriman (Studi kasus: PT. menara cipta indonesia).

Arvianto, A., Setiawan, A. H., & Saptadi, S. (2014). Model vehicle routing problem dengan karakteristik rute majemuk, multiple time windows, multiple products dan heterogeneous fleet untuk depot tunggal. Jurnal Teknik Industri, 16(2). https://doi.org/10.9744/jti.16.2.83-94

Ba, B. H., Prins, C., & Prodhon, C. (2016). Models for optimization and performance evaluation of biomass supply chains: An operations research perspective. Renewable Energy, 87, 977–989. https://doi.org/10.1016/j.renene.2015.07.045

Febrianti, T., & Harahap, E. (2021). Penggunaan aplikasi matlab dalam pembelajaran program linear. Jurnal Matematika, 20(1).

Ferdiansyah, A., Sholihah, S. A., Rifni, M., Grets, E. S., Situmorang, J. K., & Oktaviany, I. (2021). Analisis perencanaan rute pengiriman barang menggunakan metode vehicle routing problem (vrp). Journal Sistem Transportasi Dan Logistik, 1(1).

Ghilas, V., Demir, E., & Van Woensel, T. (2016). An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows and scheduled lines. Computers and Operations Research, 72. https://doi.org/10.1016/j.cor.2016.01.018

Goh, M., Lim, J. Y. S., & Meng, F. (2007). A stochastic model for risk management in global supply chain networks. European Journal of Operational Research, 182(1), 164–173. https://doi.org/10.1016/j.ejor.2006.08.028

Grazia Speranza, M. (2018). Trends in transportation and logistics. European Journal of Operational Research, 264(3), 830–836. https://doi.org/10.1016/j.ejor.2016.08.032

Li, W., & Lam, K. (2002). Optimal market timing strategies under transaction costs. Omega, 30(2). https://doi.org/10.1016/S0305-0483(01)00060-3

Luenberger, D. G., & Ye, Y. (2021). Linear and nonlinear programming (5th ed.).

Mahardika, F., & Marcos, H. (2017). Penerapan algoritma graf welch powel pada penjadwalan mata kuliah dan jadwal asisten study kasus forum asisten stmik amikom purwokerto. Simetris : Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 8(2). https://doi.org/10.24176/simet.v8i2.1208

Making, S. R. M., Silalahi, B. P., & Bukhari, F. (2018). Multi depot vehicle routing problem dengan pengemudi sesekali. Journal of Mathematics and Its Applications, 17(1). https://doi.org/10.29244/jmap.17.1.75-86

Nurmayanti, L., & Sudrajat, A. (2021). Implementasi linear programming metode simpleks pada home industry. Jurnal Manajemen, 13(3).

Purnomo, A. M., Werdiastu, D., Raissa, T., Widodo, R., & Wijayaningrum, V. N. (2019). Algoritma genetika untuk optimasi komposisi makanan bagi penderita hipertensi. Jurnal Teknologi Dan Sistem Komputer, 7(1), 1–6. https://doi.org/10.14710/jtsiskom.7.1.2019.1-6

Rumahorbo, R. L., & Mansyur, A. (2017). Konsistensi metode simpleks dalam menentukan nilai optimum. Karismatika, 3(1).

Silalahi, B. P., Sulistyono, E., & Bukhari, F. (2022). Paradox in the d-dimensional fixed charge transportation problem and algorithm for finding the paradox. Pakistan Journal of Statistics and Operation Research, 329–336. https://doi.org/10.18187/pjsor.v18i2.2807

Sulistyono, E. S. (2022). Model rute perjalanan minimal dengan menggunakan vehicle routing problem pada pt x. Jurnal Teknologi Dan Sistem Informasi Bisnis, 4(2), 293–299. https://doi.org/10.47233/jteksis.v4i2.497




DOI: http://dx.doi.org/10.24042/djm.v6i3.20062

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.