Ordinal logistic regression model on the level of job relevance of graduates

Rahma Faelasofi Sunanto, Khoirin Nisa

Abstract


The ordinal logistic regression model is one of the statistical models used to classify ordinal data. The purpose of this study is to identify the relevance of FKIP Muhammadiyah Pringsewu University Lampung graduates. The population in this study were FKIP Muhammadiyah Pringsewu University Lampung graduates in three academic years from 2018-2021. The total of the sample in this study was 133 graduates. There was missing data that was classified as Missing Random (MAR). The ordinal logistic regression model used an odds proportion model. This study will analyze the relationship between the response variable is the relevance of the graduate's work according to the field of work that has three classifications high, medium, and low, against the nine predictor variables predicted affecting the predictor variable. The result of the data description available stated that 80.3% of graduates had a high level of job relevance, 11.4% of graduates had a moderate level of job, and 8.3% of graduates had a low level of job relevance. Then the result of the ordinal logistic regression model using the proportional odds model showed that the variable predictor IPK graduates with categories 3.01-3.50; 3.406; and 3.51-4.00, predictor variable of looking for or getting a job either before or after, and variables predictor types of permanent jobs give a significant influence on the level of job relevance of graduates.


Keywords


Job Relevance of Graduates; Missing Data; Ordinal Logistic Regression; Proportion Odds Model; Single Imputation.

Full Text:

PDF

References


Agresti, A. (2006). An Introduction to categorical data analysis. In An Introduction to Categorical Data Analysis: Second Edition (2nd ed.). https://doi.org/10.1002/0470114754

Ari, E., & Yildiz, Z. (2014). Parallel lines assumption in ordinal logistic regression and analysis approaches. International Interdisciplinary Journal of Scientific Research, 1(3).

Brant, R. (1990). Assessing proportionality in the proportional odds model for ordinal logistic regression. Biometrics, 46(4). https://doi.org/10.2307/2532457

Campbell, M. K., & Donner, A. (1989). Classification efficiency of multinomial logistic regression relative to ordinal logistic regression. Journal of the American Statistical Association, 84(406). https://doi.org/10.1080/01621459.1989.10478807

Donders, A. R. T., van der Heijden, G. J. M. G., Stijnen, T., & Moons, K. G. M. (2006). Review: A gentle introduction to imputation of missing values. Journal of Clinical Epidemiology, 59(10), 1087–1091. https://doi.org/10.1016/j.jclinepi.2006.01.014

Emptage, M., & Dobson, A. J. (1992). An introduction to generalized linear models. Technometrics, 34(2), 224. https://doi.org/10.2307/1269239

Hardouin, J. B., Conroy, R., & Sébille, V. (2011). Imputation by the mean score should be avoided when validating a patient reported outcomes questionnaire by a rasch model in presence of informative missing data. BMC Medical Research Methodology, 11. https://doi.org/10.1186/1471-2288-11-105

Hosmer, D. W., & Lemeshow, S. (2000). Introduction to the logistic regression model. In Applied Logistic Regression. https://doi.org/10.1002/0471722146.ch1

Huisman, M. (2000). Imputation of missing item responses: Some simple techniques. Quality and Quantity, 34(4). https://doi.org/10.1023/A:1004782230065

Jamaludin, M. H., Wah, Y. B., Nawawi, H. M., Yung-An, C., Rosli, M. M., & Annamalai, M. (2020). Classification of familial hypercholesterolaemia using ordinal logistic regression. Pertanika Journal of Science and Technology, 28(4). https://doi.org/10.47836/pjst.28.4.03

Liu, X., & Koirala, H. (2012). Ordinal regression analysis: Using generalized ordinal logistic regression models to estimate educational data. Journal of Modern Applied Statistical Methods, 11(1), 242–254. https://doi.org/10.22237/jmasm/1335846000

Muhson, A., Wahyuni, D., & Mulyani, E. (2012). Analisis relevansi lulusan perguruan tinggi dengan dunia kerja. Jurnal Economia, 8(April).

Plaia, A., & Bondì, A. L. (2006). Single imputation method of missing values in environmental pollution data sets. Atmospheric Environment, 40(38). https://doi.org/10.1016/j.atmosenv.2006.06.040

Rachman, A., Setiawan, M. A., & Qarni, M. Al. (2018). The relevance of job selection of guidance and counseling department graduates of lambung mangkurat university. Proceedings of the 1st International Conference on Creativity, Innovation and Technology in Education (IC-CITE 2018). https://doi.org/10.2991/iccite-18.2018.39

Saputra, A. V. (2014). Analisis kesesuaian pendidikan (s1) dan pekerjaan yang didapatkan di kota malang (perilaku sarjana fresh graduate memperoleh pekerjaan pertamanya). Jurnal Ilmiah Mahasiswa FEB Universitas Brawijaya, 3(1).

Setyaningsih, I. (2013). Analisis kualitas lulusan berdasarkan tingkat kepuasan pengguna lulusan. Ilmiah Teknik Industri (JITI), 12(01), 73–82.

Siahaan, D., Wahyuningsih, S., & Amijaya, F. (2017). Aplikasi classification and regression tree (cart) dan regresi logistik ordinal dalam bidang pendididikan. EKSPONENSIAL, 7(1).

Zhang, Z. (2016). Missing data imputation: Focusing on single imputation. Annals of Translational Medicine, 4(1). https://doi.org/10.3978/j.issn.2305-5839.2015.12.38




DOI: http://dx.doi.org/10.24042/djm.v6i3.19716

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.