Estimating flood hazard rate in parepare using likelihood approach single decrement method

Ahmad Fajri S , Nurul Fuady Adhalia H , Putri Ayu Maharani , Syahrul Ramadhan Tahir

Abstract


Floods are one example of a random stochastic process. One important parameter to determine the chance of a flood to occur is the hazard rate. Therefore, a hazard rate estimation model is needed. One of the methods used to estimate the hazard rate at point t0 was the single decrement method with a likelihood approach that required exit time information, namely the time when a flood occurs and the assumed distribution of waiting times for the next flood to occur. The distribution of waiting times was assumed to be linear and exponential distribution. Hazard rate estimation used flood data that occurred in Parepare. The hazard rate estimator obtained using these two waiting time assumptions was transformed into a parametric model. The parametric model used was a regression model with linear, quadratic, and cubic assumptions. The best parametric model was a quadratic regression model for the assumed exponential distribution of waiting times based on R Square, Mean Square Error, and real regression test. The estimated hazard rate value obtained can be applied to estimate the probability of a flood event occurring in the interval (0,t0]. The selected parametric model is expected to be able to estimate the hazard rate value accurately.


Keywords


Hazard Rate; Flood; Single Decrement; Likelihood; Waiting Time

Full Text:

PDF

References


Bowers, N. L., Gerber, H. U., Hickman, J. C., Jones, D. A., & Nesbitt, C. J. (1997). Actuarial mathematics. The Society of Actuaries.

Collet, D. (2003). Modelling survival data in medical research (2nd ed.). Chapman and Hall.

Darwis, S., Sunusi, N., Gunawan, A. Y., Mangku, I. W., & Wahyuningsih, S. (2009). Single decrement approach for estimating earthquakes hazard rate. Advances and Applications in Statistics, 11(2), 229–237.

Kleinbaum, D. G., & Klein, M. (2007). Survival Analysis, a self-learning text. Springer.

Krishnamoorthy, K. (2015). Handbook of statistical distributions with applications (2nd ed.). Chapman and Hall/CRC.

Le, C. T. (1997). Applied survival analysis. John Willey.

Ogata, Y. (1999). Seismity analysis through point-process modelling: A review. Pure and Applied Geophysics, 155(2–4), 471–507. https://doi.org/10.1007/s000240050275

Sunusi, N. (2010). Pengembangan estimasi hazard rate proses titik temporal dan aplikasinya pada prakiraan kemunculan gempa. Institut Teknologi Bandung.

Sunusi, N., Jaya, A. K., Islamiyati, A., & Raupong. (2013). Studi temporal point process pada analisa prakiraan peluang waktu kemunculan gempa, mitigasi dan manajemen sumber daya alam. Universitas Hasanuddin.

Vere-Jones, D. (1995). Forecasting earthquakes and earthquake risk. International Journal of Forecasting, 11(4), 503–538. https://doi.org/10.1016/0169-2070(95)00621-4

Yohana, C., Griandini, D., & Muzambeq, S. (2017). Penerapan pembuatan teknik lubang biopori resapan sebagai upaya pengendali banjir. Jurnal Pemberdayaan Masyarakat Madani (JPMM), 1(2). https://doi.org/10.21009/jpmm.001.2.10




DOI: http://dx.doi.org/10.24042/djm.v6i3.19145

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.