Hydra effects predator-prey bazykin's model with stage-structure and intraspecific for predator
Abstract
Keywords
Full Text:
PDFReferences
Adhikary, P. Das, Mukherjee, S., & Ghosh, B. (2021). Bifurcations and hydra effects in bazykin’s predator–prey model. Theoretical Population Biology, 140(xxxx), 44–53. https://doi.org/10.1016/j.tpb.2021.05.002
Anjos, L. dos, Costa, M. I. da S., & Almeida, R. C. (2020). Characterizing the existence of hydra effect in spatial predator-prey models and the influence of functional response types and species dispersal. Ecological Modelling, 428(April), 109109. https://doi.org/10.1016/j.ecolmodel.2020.109109
Bajeux, N., & Ghosh, B. (2020). Stability switching and hydra effect in a predator–prey metapopulation model. BioSystems, 198, 104255. https://doi.org/10.1016/j.biosystems.2020.104255
Cortez, M. H., & Abrams, P. A. (2016). Hydra effects in stable communities and their implications for system dynamics. Ecology, 97(5), 1135–1145. https://doi.org/10.1890/15-0648.1
Cortez, M. H., & Yamamichi, M. (2019). How (co)evolution alters predator responses to increased mortality: Extinction thresholds and hydra effects. Ecology, 100(10), 1–17. https://doi.org/10.1002/ecy.2789
Esteves, P. V, & Caxias, D. De. (2021). Multiple stage hydra effect in a stage – structured prey–predator model. 1–12.
Garain, K., & Mandal, P. S. (2021). Bubbling and hydra effect in a population system with allee effect. Ecological Complexity, 47(May), 100939. https://doi.org/10.1016/j.ecocom.2021.100939
Iskin da S. Costa, M., & Dos Anjos, L. (2018). Multiple hydra effect in a predator–prey model with allee effect and mutual interference in the predator. Ecological Modelling, 373(November 2017), 22–24. https://doi.org/10.1016/j.ecolmodel.2018.02.005
Lee, A. H., Fraz, S., Purohit, U., Campos, A. R., & Wilson, J. Y. (2020). Chronic exposure of brown (hydra oligactis) and green hydra (hydra viridissima) to environmentally relevant concentrations of pharmaceuticals. Science of the Total Environment, 732, 139232. https://doi.org/10.1016/j.scitotenv.2020.139232
Liz, E., & Sovrano, E. (2022). Stability, bifurcations and hydra effects in a stage-structured population model with threshold harvesting. Communications in Nonlinear Science and Numerical Simulation, 109(January), 106280. https://doi.org/10.1016/j.cnsns.2022.106280
Lu, M., Xiang, C., Huang, J., & Wang, H. (2022). Bifurcations in the diffusive bazykin model. Journal of Differential Equations, 323, 280–311. https://doi.org/10.1016/j.jde.2022.03.039
Martcheva, M. (2015). An introduction to mathematical epidemiology. Springer, New York.
Pal, D., Ghosh, B., & Kar, T. K. (2019). Hydra effects in stable food chain models. BioSystems, 185(December 2018), 104018. https://doi.org/10.1016/j.biosystems.2019.104018
Pratama, R. A., Fransina, M., Ruslau, V., & Musamus, U. (2022). Application of beddington deangelis response function in ecological mathematical system: Study fish endemic oliv predator species in merauke. JTAM (Jurnal Teori Dan Aplikasi Matematika), 6(1), 51–60.
Sieber, M., & Hilker, F. M. (2012). The hydra effect in predator-prey models. Journal of Mathematical Biology, 64(1–2), 341–360. https://doi.org/10.1007/s00285-011-0416-6
Weide, V., Varriale, M. C., & Hilker, F. M. (2019). Hydra effect and paradox of enrichment in discrete-time predator-prey models. Mathematical Biosciences, 310, 120–127. https://doi.org/10.1016/j.mbs.2018.12.010
DOI: http://dx.doi.org/10.24042/djm.v5i3.13160
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Desimal: Jurnal Matematika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.