K-means and fuzzy c-means algorithm comparison on regency/city grouping in Central Java Province
Abstract
Keywords
Full Text:
PDFReferences
Agustini, F. (2017). Implementasi algoritma fuzzy c-means studi kasus. Jurnal Ilmu Pengetahuan Dan Teknologi Komputer, 3(1), 127–132.
BPS Jateng. (2021). Indeks pembangunan manusia (metode baru) 2019-2021. https://jateng.bps.go.id/indicator/26/83/1/indeks-pembangunan-manusia-metode-baru-.html
Bunkers, M. J., Miller, J. R., & DeGaetano, A. T. (1996). Definition of climate regions in the northern plains using an objective cluster modification technique. Journal of Climate, 9(1). https://doi.org/10.1175/1520-0442(1996)009<0130:DOCRIT>2.0.CO;2
Ghazal, T. M., Hussain, M. Z., Said, R. A., Nadeem, A., Hasan, M. K., Ahmad, M., Khan, M. A., & Naseem, M. T. (2021). Performances of k-means clustering algorithm with different distance metrics. Intelligent Automation and Soft Computing, 30(2), 735–742. https://doi.org/10.32604/iasc.2021.019067
Haqiqi, B. N., & Kurniawan, R. (2015). Analisis perbandingan metode fuzzy c-means dan subtractive fuzzy c-means. Media Statistika, 8(2), 59–67. https://doi.org/10.14710/medstat.8.2.59-67
Hassan, A. A. hussian, Shah, W. M., Othman, M. F. I., & Hassan, H. A. H. (2020). Evaluate the performance of k-means and the fuzzy c-means algorithms to formation balanced clusters in wireless sensor networks. International Journal of Electrical and Computer Engineering, 10(2), 1515–1523. https://doi.org/10.11591/ijece.v10i2.pp1515-1523
Irawan, J., Handayani, A. A. A. T., & Zohri, L. H. N. (2021). Operasionalisasi ibm spss 21 untuk meningkatkan kemampuan dan keterampilan olah data penelitian mahasiswa. Jurnal Pengabdian Magister Pendidikan IPA, 4(2). https://doi.org/10.29303/jpmpi.v4i2.660
J. Mac Queen. (1967). Some methods for classification and analysis of multivariate observations. https://doi.org/10.1007/s11665-016-2173-6
Kirana, I. O., Nasution, Z. M., & Wanto, A. (2019). Proyeksi indeks pembangunan manusia di indonesia menggunakan metode statistical parabolic dalam menyongsong revolusi industri 4.0. Jurnal Pendidikan Teknologi Dan Kejuruan, 16(2), 202. https://doi.org/10.23887/jptk-undiksha.v16i2.18178
Kolay, S., Ray, K. S., & Mondal, A. C. (2017). K+ means: An enhancement over k-means clustering algorithm. In arXiv.
Le, T., & Altman, T. (2011). A new initialization method for the fuzzy c-means algorithm using fuzzy subtractive clustering. Proc. Intl’Conf. on Information and Knowledge Engineering, Las Vegas USA, 144–150.
Ningrat, D. R., Maruddani, D. A. I., & Wuryandari, T. (2016). Analisis cluster dengan algoritma k-means dan fuzzy c-means clustering untuk pengelompokan data obligasi korporasi. None, 5(4), 641–650.
Oktarina, C., Notodiputro, K. A., & Indahwati, I. (2020). Comparison of k-means clustering method and k-medoids on twitter data. Indonesian Journal of Statistics and Its Applications, 4(1), 189–202. https://doi.org/10.29244/ijsa.v4i1.599
Purba, W., Tamba, S., & Saragih, J. (2018). The effect of mining data k-means clustering toward students profile model drop out potential. Journal of Physics: Conference Series, 1007(1). https://doi.org/10.1088/1742-6596/1007/1/012049
Rahakbauw, D. L., Ilwaru, V. Y. I., & Hahury, M. H. (2017). Implementasi fuzzy c-means clustering dalam implementation of fuzzy c-means clustering in. Jurnal Ilmu Matematika Dan Terapan, 11, 1–12.
Ramadhan, A., Mustakim, & Handinata, R. (2019). Implementasi algoritma fuzzy c means dan moora untuk pengelompokan dan penentuan wilayah penanggulangan bencana banjir.
Sutoyo, M. N., & Sumpala, A. T. (2016). Penerapan fuzzy c-means untuk deteksi dini kemampuan penalaran matematis. Scientific Journal of Informatics, 2(2), 129. https://doi.org/10.15294/sji.v2i2.5080
Syakur, M. A., Khotimah, B. K., Rochman, E. M. S., & Satoto, B. D. (2018). Integration k-means clustering method and elbow method for identification of the best customer profile cluster. IOP Conference Series: Materials Science and Engineering, 336(1), 0–6. https://doi.org/10.1088/1757-899X/336/1/012017
Utomo, W. (2021). The comparison of k-means and k-medoids algorithms for clustering the spread of the covid-19 outbreak in indonesia. ILKOM Jurnal Ilmiah, 13(1), 31–35. https://doi.org/10.33096/ilkom.v13i1.763.31-35
Wakhidah, N. (2010). Clustering menggunakan k-means algorithm. Jurnal Transformatika, 8(1), 33. https://doi.org/10.26623/transformatika.v8i1.45
Wiharto, W., & Suryani, E. (2020). The comparison of clustering algorithms k-means and fuzzy c-means for segmentation retinal blood vessels. Acta Informatica Medica, 28(1), 42–47. https://doi.org/10.5455/AIM.2020.28.42-47
Winarta, A., & Kurniawan, W. J. (2021). Optimasi cluster k-means menggunakan metode elbow pada data pengguna narkoba dengan pemrograman python. Jurnal Teknik Informatika Kaputama (JTIK), 5(1), 113–119.
Windarto, A. P., Hasan Siregar, M. N., Suharso, W., Fachri, B., Supriyatna, A., Carolina, I., Efendi, Y., & Toresa, D. (2019). Analysis of the k-means algorithm on clean water customers based on the province. Journal of Physics: Conference Series, 1255(1). https://doi.org/10.1088/1742-6596/1255/1/012001
Zhou, K., & Yang, S. (2020). Effect of cluster size distribution on clustering: A comparative study of k-means and fuzzy c-means clustering. Pattern Analysis and Applications, 23(1), 455–466. https://doi.org/10.1007/s10044-019-00783-6
DOI: http://dx.doi.org/10.24042/djm.v5i2.12204
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Desimal: Jurnal Matematika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.