An Analysis Genotype Inheritance in a Trihybrid Cross by Applying a Diagonalization of Matrix Method

Dorrah Azis, Marsela Nuvela Syanur, Amanto Amanto, La Zakaria

Abstract


This research aimed to find out the formulation of inheritance to know the genotype of the n-th generation in trihybrid crosses with controlled parent genotypes and analyze them by applying the diagonalization of a matrix. Matrix diagonalization makes it easier to find out the inheritance genotype of the n-th generation in trihybrid to obtain superior offspring compared with crossing it one by one, which requires a lot of time and cost. Based on the analysis, an equation for the probability of inheritance was obtained for 27 genotypes of the n-th generation, and the resulting offspring in an infinite generation are likely to have the TTKKBB genotype.

Keywords


Diagonalization of matrix; genotype; trihybrid cross.

Full Text:

PDF

References


Anton, H., Rorres, C., & Kaul, A. (2019). Elementary linear algebra: Applications version (12th ed.). John Wiley & Sons, Inc.

Kaffah, M. Y. S., & Romdhini, M. U. (2015). Analisis diagonalisasi matriks untuk menentukan individu ke-n berdasarkan peluang genotip induk. BioWallacea Jurnal Ilmiah Ilmu Biologi, 1(2), 98–103.

Kumari, M. N. M., Kavya, H. U., & Bavshar, Y. N. (2018). Applications of linear algebra in genetics. Journal of Harmonized Research in Applied. https://doi.org/10.30876/johr.6.4.2018.236-240

Paniello, I. (2021). In-evolution operators in genetic coalgebras. Linear Algebra and Its Applications, 614, 197–207. https://doi.org/10.1016/j.laa.2020.03.032.

Petoukhov, S., & Petukhova, E. (2016). Symmetries in genetic systems and the concept of geno-logical coding. Information, 8(1), 1–19. https://doi.org/doi:10.3390/info8010002

Petoukhov, S. V. (2011a). Matrix genetics and algebraic properties of the multi-level system of genetic alphabets. Neuroquantology, 9(4), 60–81. https://doi.org/10.14704/nq.2011.9.4.501

Petoukhov, S. V. (2011b). The genetic code, 8-dimensional hypercomplex numbers and dyadic shifts. Quantitative Biology.

Petoukhov, S. V. (2012). Symmetries of the genetic code, hyper complex numbers and genetic matrices with internal complementarities. Symmetry: Culture and Science, 23(3–4), 275–301.

Petoukhov, S. V. (2017). Genetic coding and united-hypercomplex systems in the models of algebraic biology. BioSystems, 158, 31–46. https://doi.org/http://dx.doi.org/doi:10.1016/j.biosystems.2017.05.002

Sadhukhan, R., Chowdhuri, T. K., & Datta, S. K. (2022). Tuberose (polyanthes tuberosa linn./agave amica). In S. K. Datta & Y. C. Gupta (Eds.), Floriculture and Ornamental Plants (pp. 307–387). Springer Nature Singapore Pte Ltd. https://doi.org/https://doi.org/10.1007/978-981-15-3518-5

Sobir, S., & Syukur, M. (2015). Genetika tanaman (D. M. Nastiti (ed.); 1st ed.). IPB Press.

Syafwan, H., & Nurwati, N. (2015). Penggunaan nilai eigen dan vektor eigen untuk menentukan model genotip keturunan yang tertaut kromosom x. Jurnal Manajemen Informatika Dan Teknik Komputer, 1(1), 15–20.

Wijayanti, K. (1997). Penerapan diagonalisasi matriks dan matriks dalam genetika terapan. Cakrawala Pendidikan, 16(3), 93–104.

Yuliani, S., & Mashuri, R. B. V. (2012). Penerapan diagonalisasi matriks dan matriks leslie dalam memproyeksikan jumlah populasi perempuan. UNNES Journal of Mathematics, 1(2), 52–59.




DOI: http://dx.doi.org/10.24042/djm.v5i3.11955

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Desimal: Jurnal Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  Creative Commons License
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.