Partition dimension of disjoint union of complete bipartite graphs
Abstract
For any (not necessary connected) graph $G(V,E)$ and $A\subseteq V(G)$, the distance of a vertex $x\in V(G)$ and $A$ is $d(x,A)=\min\{d(x,a): a\in A\}$. A subset of vertices $A$ resolves two vertices $x,y \in V(G)$ if $d(x,A)\neq d(y,A)$. For an ordered partition $\Lambda=\{A_1, A_2,\ldots, A_k\}$ of $V(G)$, if all $d(x,A_i)<\infty$ for all $x\in V(G)$, then the representation of $x$ under $\Lambda$ is $r(x|\Lambda)=(d(x,A_1), d(x,A_2), \ldots, d(x,A_k))$. Such a partition $\Lambda$ is a resolving partition of $G$ if every two distinct vertices $x,y\in V(G)$ are resolved by $A_i$ for some $i\in [1,k]$. The smallest cardinality of a resolving partition $\Lambda$ is called a partition dimension of $G$ and denoted by $pd(G)$ or $pdd(G)$ for connected or disconnected $G$, respectively. If $G$ have no resolving partition, then $pdd(G)=\infty$. In this paper, we studied the partition dimension of disjoint union of complete bipartite graph, namely $tK_{m,n}$ where $t\geq 1$ and $m\geq n\geq 2$. We gave the necessary condition such that the partition dimension of $tK_{m,n}$ are finite. Furthermore, we also derived the necessary and sufficient conditions such that $pdd(tK_{m,n})$ is either equal to $m$ or $m+1$.
Keywords
Full Text:
PDFReferences
Baskoro, E. T. & Haryeni, D. O. (2020). All graphs of order n≥11 and diameter 2 with partition dimension n-3. Heliyon, 6 e03694.
Chartrand, G. & Zhang, P. (2003). The theory and application of resolvability in graphs. Congr. Numer., 160, 47-68.
Chartrand, G., Salehi, E., & Zhang, P. (2000). The partition dimension of a graph. Aequationes Math., 59, 45-54.
Harary, F. & Melter, R. A. (1976). On the metric dimension of graph. Ars. Combin., 2, 191-195.
Haryeni, D. O. & Baskoro, E. T. (2015). Partition dimension of some classes of homogeneous disconnected graphs. Procedia Compute. Sci., 74, 73-78.
Haryeni, D. O., Baskoro, E. T., Saputro, S. W., Baca, M., & Semanicova-Fenovcikova, A. (2017). On the partition dimension of two-component graphs. Proc. Indian Acad. Sci. (Math. Sci.), 127 (5), 755-767.
Haryeni, D. O., Baskoro, E. T., & Saputro, S. W. (2017). On the partition dimension of disconnected graphs. J. Math. Fund. Sci., 49 (1), 18-32.
Slater, P. J. (1975). Leaves of trees. Congr. Numer., 14, 549-559.
Tomescu, I. (2008). Discrepancies between metric dimension and partition dimension of a connected graph. Discrete Math., 308, 5026-5031.
Yero, I. G., Kuziak, D. & Rodriguez-Velazquez, J. A. (2010). A note on the partition dimension of Cartesian product graphs. Appl. Math. Comput., 217, 3571-3574.
Yero, I. G., Jakovac, M., Kuziak D., & Taranenko, A. (2014). The partition dimension of strong product graphs and Cartesian product graphs. Discrete Math., 331, 43-52.
DOI: http://dx.doi.org/10.24042/djm.v4i2.10190
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Desimal: Jurnal Matematika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Desimal: Jurnal Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.