Knowledge Level and Self-Confidence on The Computational Thinking Skills Among Science Teacher Candidates

Titik Rahayu, Kamisah Osman

Abstract


The trending topic in today's education is computational thinking skills which are used to help to solve complicated problems easier. This study aims to identify the level of knowledge and self-confidence of science teacher candidates (physics and biology) on computational thinking skills. The survey research design was used through a mixed-method approach by combining quantitative and qualitative approaches. The quantitative study involved 1016 randomly selected groups of science teachers while in the qualitative study, eight science teachers were chosen based on the scores obtained from the quantitative study. The questionnaire was used as a quantitative data collecting technique to analyze descriptive statistics. Then, an interview was used as the qualitative data collecting technique and was analyzed through theme creation. The findings show that science teacher candidates have a high level of knowledge and self-confidence. The implication of this study is very important for teacher candidates because computational thinking can help to facilitate problems solving in everyday life. Teacher candidates need to be given knowledge and understanding of computational thinking skills, to have readiness and self-confidence in facing the challenges of the learning in the 21st-century

Keywords


computational thinking skills; knowledge; self-confidence; physics science teachers candidate

Full Text:

PDF

References


Adicondro, N., & Purnamasari, A. (2011). Efikasi Diri, Dukungan Sosial Keluarga dan Self Regulated Learning pada Siswa Kelas VIII. Jurnal Humanitas, 8(1), 17–27.

Aho, A. V. (2012). Computation and Computational Thinking. The Computer Journal, 55(7), 832–835.

Angeli, C., & Jaipal Jamani, K. (2018). Preparing Pre-service Teachers to Promote Computational Thinking in School Classrooms. In Computational Thinking in the STEM Disciplines (127–150). Springer.

Bandura, A. (1997). Self-Efficacy, The Exercise of Control. Freeman and Company: New York.

Barr, V., & Chris, S. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? ACM Inroads, 2(1), 48–54.

Batubara, H. H. (2017). Pengembangan Situs e-Learning dengan Moodle versi 3.1 sebagai Media Pembelajaran pada Program Studi Pendidikan Guru Madrasah Ibtidaiyah. Jurnal Al Bidayah, 9(1).

Belanger, C., Christenson, Hannah, & Lopac, K. (2018). Confidence and Common Challenges: The Effects of Teaching Computational Thinking to Students Ages 10-16. Sophia, the St. Catherine University Repository.

Bower, M. (2017). Self-Confidence Questionaire.

Bower, Wood, L. N., Lai, J. W., Howe, C., Lister, R., Mason, R., … Veal. (2017). Improving the Computational Thinking Pedagogical Capabilities of School Teachers. Australian Journal of Teacher Education, 42(3). https://doi.org/http://dx.doi.org/10.14221/ajte.2017v42n3.4

Cooper, S., Pérez, L. C., & Rainey, D. (2010). K--12 computational learning. Communications of the ACM, 53(11), 27–29.

Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.

CSTA, & ISTE. (2011). Computational Thinking in K–12 Education Leadership Toolkit.

Department for Education England. (2014). The National Curriculum in England Key Stages 3 and 4 Framework Document.

Effendi, M. (2016). Integrasi Pembelajaran Active Learning dan Internet-Based Learning dalam Meningkatkan Keaktifan dan Kreativitas Belajar. Nadwa, 7(2), 283–309.

Ellis, S., & Tod, J. (2013). Behaviour for Learning: Proactive Approaches to Behaviour Management. Routledge, Oxon, UK.

Endarta, A. (2014). Pembelajaran Kurikulum 2013.

Erdogan, M. N., & Koseoglu, F. (2012). Analysis of High School Physics, Chemistry and Biology Curriculums in Terms of Scientific Literacy Themes. Educational Sciences: Theory and Practice, 12(4), 2899–2904.

Farida, I. (2012). Interkoneksi Multipel Level Representasi Mahasiswa Calon Guru pada Kesetimbangan dalam Larutan melalui Pembelajaran Berbasis Web. Disertasi: Universitas Pendidikan Indonesia.

Feldhausen, R., Weese, J. L., & Bean, N. H. (2018). Increasing Student Self-Efficacy in Computational Thinking via STEM Outreach Programs. Paper Session: Computational Thinking. Baltimore, MD, USA. https://doi.org/https://doi.org/10.1145/3159450.3159593

Figueiredo, Q., & Alberto, J. (2017). How to Improve Computational Thinking: a Case Study Education in the Knowledge Society. Universidad de Salamanca Salamanca, España, 18(4), 35–51.

Gess Newsome, J. (1999). Pedagogical content knowledge: An introduction and orientation. In Examining pedagogical content knowledge (3-17). Springer.

Grover, & Pea, R. (2013). Computational thinking in K–12. A review of the state of the field. Educational Researcher, 42(1), 38–43. https://doi.org/https://doi.org/10.3102/0013189X12463051

Gunawan, G., Harjono, A., Sahidu, H., & Gunada, I. W. (2019). Pelatihan Pemanfaatan Teknologi Informasi Bagi Guru Ipa Fisika Di Lombok Barat. Jurnal Pendidikan Dan Pengabdian Masyarakat, 2(1).

Gunawan, G., Harjono, A., & Sutrio, S. (2017). Multimedia Interaktif dalam Pembelajaran Konsep Listrik bagi Calon Guru. Jurnal Pendidikan Fisika Dan Teknologi, 1(1), 9–14.

Han, S. W. (2014). The role of teacher efficacy in the development of pedagogical content knowledge among experienced science teachers (Doctoral dissertation). Texas Scholar Work. The University of Texas at Austin.

Jaengaksorn, N., Ruengtrakul, A., & Piromsombat, C. (2015). Developing self-efficacy and motivation to be a teacher scale, Thai version. In Procedia-Social and Behavioral Sciences, 171, 1388–1394.

Jeongwon, C., Sangjin, A., & Youngjun, L. (2015). Computing education in Korea current issues and endeavors. ACM Transactions on Computing Education (TOCE), 15(2), 8.

Josip, P. N., & Sinambela, M. (2013). Kurikulum 2013 dan Implementasinya dalam pembelajaran. Generasi Kampus, 6(2).

Kamil, S. U. R., Amin, H., Saidin, S., & Upe, A. (2019). The Implementation of Information and Communication Technology on Learning Process in Communication Department of UHO Facing Industrial Revolution 4.0. Proceeding of Community Development, 2, 344–352.

Koç, E. S. (2015). An evaluation of the effectiveness of committees of teachers according to the teachers’ views, Ankara province sample. Procedia-Social and Behavioral Sciences, 174, 3–9.

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the computational thinking scales (CTS). Computers in Human Behavior, 72, 558–569. https://doi.org/10.1016/j.chb.2017.01.005

Long, X., Jiehui, Z., & Zhanli, L. (2013). The design of teaching structure based on competency training of computational thinking. In Proceedings of the International Conference on Education Technology and Information System (ICETIS 2013). Amsterdam, The Netherlands: Atlantis Press.

Machali, I. (2014). Kebijakan Perubahan Kurikulum 2013 dalam Menyongsong Indonesia Emas Tahun 2045. Jurnal Pendidikan Islam, 3(1), 71. https://doi.org/10.14421/jpi.2014.31.71-94

Mardhiyana, D., & Nasution, N. B. (2019). Kesiapan Mahasiswa Pendidikan Matematika Menggunakan E-Learning Dalam Menghadapi Era Revolusi Industri 4.0. In Seminar Nasional Pendidikan Matematika Ahmad Dahlan, 6.

Matt, B., & Falkner, K. (2015). Computational thinking, the notional machine, pre-service teachers, and research opportunities. In Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), 27.

Meritxell Estebanell, M., Juan González, M., Marta Peracaula, B., & Víctor Lopez, S. (2017). About The Concept Of Computational Thinking And Its Educational Potentialities By Pre-Service Teachers. In Proceedings of EDULEARN17 Conference 3rd-5th July 2017. Barcelona, Spain.

Morine-Dershimer, G., & Kent, T. (1999). The complex nature and sources of teachers’ pedagogical knowledge. In Examining pedagogical content knowledge, Springer, 21-50.

Nurasika. (2017). Analysis Of Self-Efficacy Against The Application Of Environmental Education Across The Curriculum In Science Teachers In Johor Bahru. Fakulti Pendidikan Universiti Kebangsaan Malaysia.

Osman, K., Hiong, L. C., & Vebrianto, R. (2013). 21st century biology: an interdisciplinary approach of biology, technology, engineering and mathematics education. Procedia-Social and Behavioral Sciences, 102, 188–194.

Ozcinar, H. (2017). Bibliometric analysis of computational thinking. Educational Technology Theory & Practice, 7(2), 149–171.

Powell, S., & Tod, J. (2014). A Systematic Review of How Theories Explain Learning Behaviour in School Contexts, EPPI-Centre, Social Science Research Unit. Institute of Education, University of London.

Rahayu, T., Syafril, S., & Wati, W. (2017). Pengembangan Lembar Kerja Siswa (LKS) IPA Terpadu Menggunakan Kooperatif Tipe STAD, 1–6.

Safrudin, M., Trisnamansyah, S., Makmun, T. A. S., & Darmawan, D. (2019). Pengembangan Pembelajaran Model Blended Computer Based Learning (BCBL) Tentang Turunan Fungsi untuk Meningkatkan Kemandirian Belajar Siswa SMA. In Prosiding Seminar Nasional Pendidikan KALUNI (Vol. 2).

Sands, P., Yadav, A., & Good, J. (2018). Computational Thinking in K-12: In-service Teacher Perceptions of Computational Thinking. In Computational Thinking in the STEM Disciplines. Springer, 151-164.

Sari, P. I., Gunawan, G., & Harjono, A. (2017). Penggunaan Discovery Learning Berbantuan Laboratorium Virtual pada Penguasaan Konsep Fisika Siswa. Jurnal Pendidikan Fisika Dan Teknologi, 2(4), 176–182.

Sarıcoban, G. (2015). Academic Self-Efficacy Beliefs of Pre-Service Elementary School Teacher Candidates. Procedia-Social and Behavioral Sciences, 186, 28–32.

Selby, & Woollard. (2014). Refining an understanding of computational thinking.

Sentance, S., & Andrew, C. (2015). Teachers’ perspectives on successful strategies for teaching Computing in school. Paper presented at IFIP TCS.

Shi, W., Liu, M., & Hendler, P. (2014). Computational Features of the Thinking and the Thinking Attributes of Computing: On Computational Thinking. JSW, 9(10), 2507–2513.

Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–23.

Siahaan, S. M. (2012). Penggunaan Teknologi Informasi dan Komunikasi dalam Pembelajaran Fisika. In Prosiding Seminar Nasional Fisika Universitas Sriwijaya, 4 Juli 2012.(Energi, Lingkungan, dan Teknologi Masa Depan: Tantangan dan Peluang Ilmu Fisika), 13–20. PT. Mitra Intimarga.

Siswanto, J., Saefan, J., Suparmi, S., & Cari, C. (2016). The effectiveness of e-Lab to improve generic science skills and understanding the concept of physics. Jurnal Pendidikan Fisika Indonesia, 12(1), 33–40.

Sung, Ahn, Kai, S. M., Choi, A., & Black, J. B. (2016). Incorporating touch-based tablets into classroom activities: fostering children’s computational thinking through ipad integrated instruction, in: Handbook of Research on Mobile Learning in Contemporary Classrooms. IGI Global, 378–406. https://doi.org/http://dx.doi.org/10.4018/978-1-5225-0251-7.ch019

Thomas, P., & Setiaji, K. (2014). E-Learning Dengan Pendekatan Kooperatif Tipe Jigsaw Untuk Meningkatkan Aktivitas Dan Hasil Belajar Mahasiswa. Dinamika Pendidikan, 9(1).

Titik, R., & Kamisah, O. (2018). Early Study: Self-Confidence on the Computational Thinking Skills Among Science Teacher Candidates. In The 5th International Conference on Islam and Higher Education (5th ICIHE 2018). Padang, Indonesia.

Tschannen Moran, M., & Gareis, C. R. (2004). Principals;s sense efficacy: Assessing a promiseing construct. Review of Educational Research, 68(2), 202–248.

Wing, J. (2006). Computational Thinking. Communications of the Association for Computing Machinery (ACM), 49(3), 33–35.

Wing, J. (2011). Research notebook: Computational thinking: What and why? The Link Magazine, Spring. Carnegie Mellon University, Pittsburgh.

Wu, M. L. (2018). Educational Game Design as Gateway for Operationalizing Computational Thinking Skills among Middle School Students. International Education Studies, 11(4), 15.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking in elementary and secondary teacher education. ACM Trans. Comput. Educ, 14(1), 16.

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb, J. T. (2011). Introducing Computational Thinking in Education Courses, (42), 9–12.

Yağcı, M. (2019). A valid and reliable tool for examining computational thinking skills. Education and Information Technologies, 24(1), 929–951.

Yuliati, L. (2016). Pengembangan model pembelajaran untuk meningkatkan kemampuan mengajar calon guru fisika. Jurnal Ilmu Pendidikan, 14(1)




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v8i1.4450

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.