Impact of Different Grids on the Quality of Abdominal Radiography Images

Shitoch Armandho Bimo Shekti, Ni Larasati Kartika Sari, Puji Hartoyo, Dewi Muliyati

Abstract


Grids are additional accessory in radiography that absorb scatter radiation hoping to reduce blurriness on the image.  Various type of grids is available in the market so the effect of those on image quality needs to be evaluated. The purpose of this study is to compare the quality of abdominal radiography images using three variations of grids (moving and stationary grid) and without using a grid in order to see the best type or grids to produce the greatest image quality. Abdominal radiography exposure factors were used to expose two phantoms. Pro-Fluo 150 phantom was used as the object to measure image quality such as Signal to Noise Ratio (SNR), Contrast to Noise Ratio (CNR), and spatial resolution. A survey of five radiologists was also performed to evaluate the contrast and the visibility of objects’ boundaries in Anthropomorphic phantom images. The result of this study showed that the usage of various grids gave different values of SNR, CNR, and spatial resolution. The exposure factor of 70-75 kV in each mAs have the highest SNR value (52,64-78,31). Images obtained without a grid and exposure factor of 80-85 kV in each mAs have the highest SNR value (160,65-800,48). Images obtained from using moving grid also have the highest CNR and spatial resolution, with score of 3.72 – 7.62 and 3.7 lp/mm. The results of radiologists’ survey showed that the average score for moving grid’s images was 29.8 of 30 with a percentage of 99.33%. Therefore, it that can concluded that images obtained with moving grid have the best quality that can provides contrast and shows the boundaries between organs clearly in abdominal radiography. Based on this research, it’s recommended to use moving grid for abdominal radiography examinations.

Keywords


Noise Ratio; Signal to Noise Ratio; Spatial Resolution

Full Text:

PDF

References


Abela, N., Guilherme Couto, J., Zarb, F., & Mizzi, D. (2022). Evaluating the use of anti-scatter grids in adult knee radiography. Radiography, 28(3), 663–667. https://doi.org/https://doi.org/10.1016/j.radi.2022.05.004

Alyassin, A. M., Aljarrah, A. H., Ababneh, Z. Q., Ababneh, A. M., & Alyassin, N. A. (2024). Geant4 Simulation of Scatter Radiation Removal: Comparison and Validation of Anti-scatter Grid and Air Gap for X-ray Mammography. Jordan Journal of Physics, 17(1), 17–33. https://doi.org/10.47011/17.1.3

Alzen, G., & Benz-Bohm, G. (2011). Radiation protection in pediatric radiology. Deutsches Arzteblatt International, 108(24), 407–414. https://doi.org/10.3238/arztebl.2011.0407

Alzyoud, K., Al-Murshedi, S., Abualkhael, K., Alqawasmeh, F., & England, A. (2022). Supine and erect abdominal radiography: A comparison of radiation dose and image quality. Applied Radiation and Isotopes, 190, 110477. https://doi.org/https://doi.org/10.1016/j.apradiso.2022.110477

Boone, J. M., Lindfors, K. K., Iii, V. N. C., & Seibert, J. A. (2000). ScatterÕprimary in mammography: Comprehensive results.

Bor, D., Birgul, O., Onal, U., & Olgar, T. (2016). Investigation of grid performance using simple image quality tests. Journal of Medical Physics, 41(1), 21–28. https://doi.org/10.4103/0971-6203.177280

Bushong, S. C. (n.d.). Radiologic science for technologists : physics, biology, and protection. Fifth edition. St. Louis : Mosby, [1993] ©1993. https://search.library.wisc.edu/catalog/999704048902121

Carroll, Q. B. (2011). Radiography in the Digital Age: Physics, Exposure, Radiation Biology. Charles C. Thomas. https://books.google.co.id/books?id=-EQ8YgEACAAJ

Fangqin Kong. (2008). Quality Evaluation for the Digital Radiography Inspection Based on Imaging Parameters. World Conference on Nondestructive Testing.

Gennaro, G., Katz, L., Souchay, H., Klausz, R., Alberelli, C., Maggio, C., & Maggio, C. (2012). Grid removal and impact on population dose in full-field digital mammography Grid removal and impact on population dose in full-field. 547(2007). https://doi.org/10.1118/1.2426402

Goode, A. R., Snyder, C., Snyder, A., Collins, P., DeLorenzo, M., & Lin, P. J. (2019). Signal and contrast to noise ratio evaluation of fluoroscopic loops for interventional fluoroscope quality control. Journal of Applied Clinical Medical Physics, 20(10), 172–180. https://doi.org/10.1002/acm2.12734

Grid, A. S. U., Techniques, N., Moey, S. F., Nabilah, N., & Mohd, B. (2019). Image Quality and Entrance Surface Dose Evaluation of Lateral Cervical Spine : Iranian Journal of Medical Physics Image Quality and Entrance Surface Dose Evaluation of Lateral Cervical Spine : A Study Using Grid and Non-Grid Techniques. February. https://doi.org/10.22038/ijmp.2018.33059.1400

Ichikawa, H., Yamada, Y., Sawane, Y., Terabe, M., Ono, T., Nishikawa, M., Yamaguchi, M., & Shimada, H. (2019). [Usefulness of Post-processing Scatter Correction in Portable Abdominal Radiography Using a Low Ratio Anti-scatter Grid]. Nihon Hoshasen Gijutsu Gakkai zasshi, 75(9), 885–891. https://doi.org/10.6009/jjrt.2019_JSRT_75.9.885

Irsal, M., & Winarno, G. (2020). Pengaruh Parameter Milliampere-Second (mAs) terhadap Kualitas Citra Dan Dosis Radiasi Pada Pemeriksaan CT scan Kepala Pediatrik. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 17(1), 1. https://doi.org/10.20527/flux.v17i1.7085

Jaffe, T., & Thompson, W. M. (2015). Large-bowel obstruction in the adult: classic radiographic and ct findings, etiology, and mimics, Radiology, 275(3), 652-663

Kawashima, H., Ichikawa, K., Kitao, A., Matsubara, T., Sugiura, T., Kobayashi, T., & Kobayashi, S. (2023). Radiation dose considerations in digital radiography with an anti-scatter grid: A study using adult and pediatric phantoms. Journal of Applied Clinical Medical Physics, 24(9), 1–8. https://doi.org/10.1002/acm2.14081

Kempski, K. M., Graham, M. T., Gubbi, M. R., Palmer, T., & Lediju Bell, M. A. (2020). Application of the generalized contrast-to-noise ratio to assess photoacoustic image quality. Biomedical Optics Express, 11(7), 3684. https://doi.org/10.1364/boe.391026

Kunitomo, H., & Ichikawa, K. (2020). Signal-to-noise ratio improvements using anti-scatter grids with different object thicknesses and tube voltages. Physica Medica: European Journal of Medical Physics, 73, 105–110. https://doi.org/10.1016/j.ejmp.2020.04.014

Lampignano, J., & Kendrick, L. E. (2020). Bontrager’s Textbook of Radiographic Positioning and Related Anatomy. Elsevier Health Sciences. https://books.google.co.id/books?id=oWCKzQEACAAJ

Larsson, J. C., Shaker, K., & Hertz, H. M. (2018). Focused anti-scatter grid for background reduction in x-ray fluorescence tomography. Optics Letters, 43(11), 2591. https://doi.org/10.1364/ol.43.002591

Lee, J., Lim, C. H., Park, J.-W., Kim, I.-H., Moon, M. K., & Lim, Y.-K. (2017). The Effect of Grid Ratio and Material of Anti-scatter Grid on the Scatter-to-primary Ratio and the Signalto-noise Ratio Improvement Factor in Container Scanner X-ray Imaging. Journal of Radiation Protection and Research, 42(4), 197–204. https://doi.org/10.14407/jrpr.2017.42.4.197

Lee, K., Lee, C., & Jin, G. (2015). Stationary and Moving Computed Radiography Grids : Comparative Observer’s Perception. Journal of the Korean Society of Radiology, 9(7), 515–521. https://doi.org/10.7742/jksr.2015.9.7.515

Lisson, C. G., Lisson, C. S., Kleiner, S., Regier, M., Beer, M., & Schmidt, S. A. (2019). Iterative scatter correction for grid-less skeletal radiography allows improved image quality equal to an antiscatter grid in adjunct with dose reduction: a visual grading study of 20 body donors. Acta Radiologica, 60(6), 735–741. https://doi.org/10.1177/0284185118796668

Mahmoud Helmy Mohammed, A., Sayed Ragheb, A. E.-M., Kadry El-Gendy, M., & Abu El-Naga Mohamed, M. (2021). Role of Imaging in Acute Abdomen in Adult. Al-Azhar Medical Journal, 50(2), 1479–1488. https://doi.org/10.21608/amj.2021.158637

Masayoshi, Mizuta; Shigeru, Sanada; Hiroyuki, Akazawa; Toshifumi, Kasai; Shuji, Abe; Yasuhiro, Ikeno; , Shigeki, M. (2012). Comparison of anti-scatter grids for digital imaging with use of a direct-conversion flat-panel detector. Radiological Physics and Technology, 5(1), 46–52.

Mekis, N., Bianchi, T., Doyle, C., Gauchat, M., Geerling, I., Linneman, J., Staats, S., & Campeanu, C. (2024). Gridless adult cervical spine radiography and its' effect on image quality and radiation dose: A phantom study, Radiography, 30(1), 359-366

Moey, S.-F., Jaafar, N. F. H. M., & Saidin, N. (2019). Image quality and radiation dose comparison in medium and high kilovoltage for digital pa chest radiography, International journal of allied health sciences, 3(4), 954–966.

Moey, S.F, Ramlee & N.N.B.M. (2019) Image Quality and Entrance Surface Dose Evaluation of Lateral Cervical Spine: A Study Using Grid and Non-Grid Techniques. Iran J Med Phys, 16(1) 166-170. 10.22038/ijmp.2018.33059.1400.

Omondi, S. O., Msaki, P. K., Ramadhan, K. R., & Lugendo, I. J. (2020). Improved Image Quality in Digital Mammography Using Anti-Scatter Grids. Tanzania Journal of Science, 46(3), 620–627. https://doi.org/10.4314/tjs.v46i3.4

Porrello, G., Cannella, R., Pérez, E. A., Brancatelli, G., & Vernuccio, F. (2023). The Neoplastic Side of the Abdominal Wall: A Comprehensive Pictorial Essay of Benign and Malignant Neoplasms, Diagnostics (Basel), 13(2), 315

Priyono, S., Anam, C., & Wahyu Setia Budi, dan. (2020). Pengaruh rasio grid terhadap kualitas radiograf fantom kepala, Berkala Fisika, 23(1), 10-16.

Rana, R., Jain, A., Shankar, A., Bednarek, D. R., & Rudin, S. (2016). Scatter estimation and removal of anti-scatter grid-line artifacts from anthropomorphic head phantom images taken with a high resolution image detector. Medical Imaging 2016: Physics of Medical Imaging, 9783, 978364. https://doi.org/10.1117/12.2216833

Saha, D., Bhadra, R. C., & Biswas, N. (2022). Radiological evaluation of ovarian mass by contrast-enhanced computed tomography abdomen with clinicopathological correlation in Eastern Indian population, Asian Journal of Medical Science, 13(10), 243-247

Sayed, M., Knapp, K. M., Fulford, J., Heales, C., & Alqahtani, S. J. (2024). The impact of X-ray scatter correction software on abdomen radiography in terms of image quality and radiation dose. Radiography (London, England : 1995), 30(4), 1125–1135. https://doi.org/10.1016/j.radi.2024.05.006

Shettima, A. ., Malgwi, F., Gunda, N. ., Nwobi, I., Gajerima, F., Abubakar, A., & Kurama, M. (2017). Evaluation of Image Quality of Plain Abdominal Radiographs at University of Maiduguri Teaching Hospital, North-Eastern Nigeria. IOSR Journal of Nursing and Health Science, 06(02), 86–89. https://doi.org/10.9790/1959-0602078689

Shimbo, G., Tagawa, M., Matsumoto, K., Tomihari, M., & Miyahara, K. (2018). Evaluation of grid performance for thoracic radiography in calves using a portable x-ray unit. Japanese Journal of Veterinary Research, 66(1), 13–19. https://doi.org/10.14943/jjvr.66.1.13

Singh, V., Jain, A., Bednarek, D. R., Rudin, S., & Stoke, T. (2014). HHS Public Access. 1–17. https://doi.org/10.1117/12.2043063.Limitations

Suraningsih, N., Nugrahaning Prayoga, A., Alfiani, N., Kesehatan, F., & Medik, K. (2023). Science Midwifery Effect of exposure factors on radiographic image quality in the use of abdominal phantom with ap projection. Science Midwifery, 11(2), 2721–9453. www.midwifery.iocspublisher.orgjournalhomepage:www.midwifery.iocspublisher.org

Tanaka, N., & Kuroyanagi, H. (2020). Combination system in advanced image processing for improving image contrast and a conventional row-ratio grid for an indirect flat-panel detector system: An experimental study. Physica Medica, 74(January), 40–46. https://doi.org/10.1016/j.ejmp.2020.04.017

Zhou, A., Yin, Y., Tan, Q., L. White, G., & Davidson, R. (2020). The determination of the optimal strip-thickness of anti-scatter grids for a given grid ratio and strip height. International Journal of Imaging Systems and Technology, 30(4), 916–925. https://doi.org/10.1002/ima.22409




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v13i1.22202

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.