Electrochemical Properties of Activated Carbon Electrodes for Supercapacitor Application: The Effect of Various Electrolyte Concentrations of Na2SO4

Memoria rosi, M Nanang Ziad Fatmizal, Dedy Hendra Siburian, Abrar Ismardi, Nor Hakimin Abdullah

Abstract


To achieve the high accomplishment of the supercapacitor, various electrolyte concentrations of Na2SO4 (0.5 M, 1 M, and 2 M) were added to the activated carbon (AC) electrode. The AC has a moderate surface area of 1,500 m2/g and a pore size of 1 nm (micropore scale). The AC electrode was deposited from the mixture of AC, carbon black, and polytetrafluoroethylene (PTFE) with a weight ratio of 8:1:1 using the doctor blade method. Cyclic Voltammetry (CV), Galvanostatic Charge Discharge (GCD), and Electrical Impedance Spectroscopy (EIS) were used to characterize the electrodes electrochemically. Based on CV, GCD, and EIS characterizations, the measured specific capacitance of 17.2 F/g and ESR of 4.4 W  exhibit the best performance due to their high ionic conductivity. We can conclude that 2 M Na2SO4 is a viable option for the ionic electrolyte of the microporous AC for the high performance of a supercapacitor.

Keywords


Activated carbon; Characterization; Electrochemical Electrolyte concentration; Supercapacitor

Full Text:

PDF

References


Al Jahdaly, B. A., Abu-Rayyan, A., Taher, M. M., & Shoueir, K. (2022). Phytosynthesis of Co3O4 nanoparticles as the high energy storage material of an activated carbon/Co3O4 symmetric supercapacitor device with excellent cyclic stability based on a Na2SO4 aqueous electrolyte. ACS Omega, 7(27), 23673–23684. https://doi.org/10.1021/acsomega.2c02305

Arief, R. K., Armila, A., Liswardi, A., Yahya, H., Warimani, M. S., & Putera, P. (2023). Coconut shell carbonization process using smokeless kiln. Journal of Applied Agricultural Science and Technology, 7(2), 82–90. https://doi.org/10.55043/jaast.v7i2.135

Awitdrus, A., Hanifa, Z., Agustino, A., Taer, E., & Farma, R. (2022). Perbandingan larutan elektrolit H2SO4 dan KOH pada kinerja elektrokimia bahan elektroda berbasis karbon aktif sabut kelapa muda. Jurnal Litbang Industri, 12(1), 15-20. https://doi.org/10.24960/jli.v12i1.7206

Cao, X., Jiang, C., Sun, N., Tan, D., Li, Q., Bi, S., & Song, J. (2021). Recent progress in multifunctional hydrogel-based supercapacitors. Journal of Science: Advanced Materials and Devices, 6(3), 338–350. https://doi.org/10.1016/j.jsamd.2021.06.002

Chen, Z., Wang, X., Ding, Z., Wei, Q., Wang, Z., Yang, X., & Qiu, J. (2019). Biomass-based hierarchical porous carbon for supercapacitors: effect of aqueous and organic electrolytes on the electrochemical performance. ChemSusChem, 12(23), 5099–5110. https://doi.org/10.1002/cssc.201902218

Cheng, F., Yang, X., Zhang, S., & Lu, W. (2020). Boosting the supercapacitor performances of activated carbon with carbon nanomaterials. Journal of Power Sources, 450, 227678. https://doi.org/10.1016/j.jpowsour.2019.227678

Du, X., Qin, Z., & Li, Z. (2021). Free-standing rGO-CNT nanocomposites with excellent rate capability and cycling stability for Na2So4 aqueous electrolyte supercapacitors. Nanomaterials, 11(6), 1420. https://doi.org/10.3390/nano11061420

Ghosh, S., Santhosh, R., Jeniffer, S., Raghavan, V., Jacob, G., Nanaji, K., Kollu, P., Jeong, S. K., & Grace, A. N. (2019). Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Scientific Reports, 9(1), 16315. https://doi.org/10.1038/s41598-019-52006-x

Glogic, E., Kamali, A. K., Keppetipola, N. M., Alonge, B., Kumara, G. R. A., Sonnemann, G., Toupance, T., & Cojocaru, L. (2022). Life cycle assessment of supercapacitor electrodes based on activated carbon from coconut shells. ACS Sustainable Chemistry and Engineering, 10(46), 15025–15034. https://doi.org/10.1021/acssuschemeng.2c03239

González, A., Goikolea, E., Barrena, J. A., & Mysyk, R. (2016). Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189–1206). https://doi.org/10.1016/j.rser.2015.12.249

Guo, J., Ma, Y., Zhao, K., Wang, Y., Yang, B., Cui, J., & Yan, X. (2019). High-performance and ultra-stable aqueous supercapacitors based on a green and low-cost water-in-salt electrolyte. ChemElectroChem, 6(21), 5433–5438. https://doi.org/10.1002/celc.201901591

Haider, S., Murtaza, I., Shuja, A., Abid, R., Ali, H., Asghar, M. A., & Khan, Y. (2022). Enhanced energy density of PANI/Co3O4/graphene ternary nanocomposite in a neutral aqueous electrolyte of Na2SO4 for supercapacitor applications. Journal of Electronic Materials, 51(9), 5417–5428. https://doi.org/10.1007/s11664-022-09788-0

Hajar, S., Har, N. P., Irmansyah, I., Arif, A., & Irzaman, I. (2022). Optimization of oxygen flow valve holes in small industrial scale husk furnaces. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 11(2), 255–265. https://doi.org/10.24042/jipfalbiruni.v11i2.14291

Huang, S., Zhu, X., Sarkar, S., & Zhao, Y. (2019). Challenges and opportunities for supercapacitors. APL Materials, 7(10). https://doi.org/10.1063/1.5116146

Iro, Z. S., Subramani, C., & Dash, S. S. (2016). A brief review on electrode materials for supercapacitor. International Journal of Electrochemical Science, 11(12), 10628–10643. https://doi.org/10.20964/2016.12.50

Keppetipola, N. M., Dissanayake, M., Dissanayake, P., Karunarathne, B., Dourges, M. A., Talaga, D., Servant, L., Olivier, C., Toupance, T., Uchida, S., Tennakone, K., Kumara, G. R. A., & Cojocaru, L. (2021). Graphite-type activated carbon from coconut shell: a natural source for eco-friendly non-volatile storage devices. RSC Advances, 11(5), 2854–2865. https://doi.org/10.1039/d0ra09182k

Krishnan, P., & Biju, V. (2021). Effect of electrolyte concentration on the electrochemical performance of RGO–KOH supercapacitor. Bulletin of Materials Science, 44, 1-11. https://doi.org/10.1007/s12034-021-02576-2

Kurniawan, W. B., Indriawati, A., Marina, D., & Taer, E. (2019). The potential of pepper shell (piper nigrum) for supercapacitor electrodes. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 8(1), 109–116. https://doi.org/10.24042/jipfalbiruni.v8i1.3780

Li, C., Wu, W., Wang, P., Zhou, W., Wang, J., Chen, Y., Fu, L., Zhu, Y., Wu, Y., & Huang, W. (2019). Fabricating an aqueous symmetric supercapacitor with a stable high working voltage of 2 V by using an alkaline–acidic electrolyte. Advanced Science, 6(1), 1801665. https://doi.org/10.1002/advs.201801665

Li, K., Luo, J., Wei, M., Yao, X., Feng, Q., Ma, X., & Liu, Z. (2022). Functional porous carbon derived from waste eucalyptus bark for toluene adsorption and aqueous symmetric supercapacitors. Diamond and Related Materials, 127, 109196. https://doi.org/10.1016/j.diamond.2022.109196

Lobato-Peralta, D. R., Amaro, R., Arias, D. M., Cuentas-Gallegos, A. K., Jaramillo-Quintero, O. A., Sebastian, P. J., & Okoye, P. U. (2021). Activated carbon from wasp hive for aqueous electrolyte supercapacitor application. Journal of Electroanalytical Chemistry, 901, 115777. https://doi.org/10.1016/j.jelechem.2021

Mishra, R. K., Choi, G. J., Sohn, Y., Lee, S. H., & Gwag, J. S. (2020). A novel RGO/N-RGO supercapacitor architecture for a wide voltage window, high energy density and long-life via voltage holding tests. Chemical Communications, 56(19), 2893–2896. https://doi.org/10.1039/d0cc00249f

Mohanadas, D., & Sulaiman, Y. (2022). Recent advances in development of electroactive composite materials for electrochromic and supercapacitor applications. Journal of Power Sources, 523, 231029. https://doi.org/10.1016/j.jpowsour.2022

Najib, S., & Erdem, E. (2019). Current progress achieved in novel materials for supercapacitor electrodes: Mini review. Nanoscale Advances, 1(8), 2817–2827. https://doi.org/10.1039/c9na00345b

Nguyen, T. B., Yoon, B., Nguyen, T. D., Oh, E., Ma, Y., Wang, M., & Suhr, J. (2023). A facile salt-templating synthesis route of bamboo-derived hierarchical porous carbon for supercapacitor applications. Carbon, 206, 383–391. https://doi.org/10.1016/j.carbon.2023.02.060

Novita, S. A., Santosa, S., Nofialdi, N., Andasuryani, A., Fudholi, A., & Putera, P. (2022). Fast pyrolysis of biomass with a concentrated solar power: A review. Journal of Applied Agricultural Science and Technology, 6(2), 180–191. https://doi.org/10.55043/jaast.v6i2.62

Pal, B., Yang, S., Ramesh, S., Thangadurai, V., & Jose, R. (2019). Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Advances, 1(10), 3807–3835. https://doi.org/10.1039/c9na00374f

Poonam, Sharma, K., Arora, A., & Tripathi, S. K. (2019). Review of supercapacitors: Materials and devices. Journal of Energy Storage, 21, 801–825. https://doi.org/10.1016/j.est.2019.01.010

Qin, W., Zhou, N., Wu, C., Xie, M., Sun, H., Guo, Y., & Pan, L. (2020). Mini-review on the redox additives in aqueous electrolyte for high performance supercapacitors. ACS Omega, 5(8), 3801–3808. https://doi.org/10.1021/acsomega.9b04063

Saikia, B. K., Benoy, S. M., Bora, M., Tamuly, J., Pandey, M., & Bhattacharya, D. (2020). A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel, 282, 118796. https://doi.org/10.1016/j.fuel.2020.118796

Sharma, P., & Kumar, V. (2020). Current technology of supercapacitors: A review. Journal of Electronic Materials, 49(6), 3520–3532. https://doi.org/10.1007/s11664-020-07992-4

Sivachidambaram, M., Vijaya, J. J., Niketha, K., Kennedy, L. J., Elanthamilan, E., & Merlin, J. P. (2019). Electrochemical studies on tamarindus indica fruit shell bio-waste derived nanoporous activated carbons for supercapacitor applications. Journal of Nanoscience and Nanotechnology, 19(6), 3388-3397.

Su, L., Zhang, Q., Wang, Y., Meng, J., Xu, Y., Liu, L., & Yan, X. (2020). Achieving a 2.7 V aqueous hybrid supercapacitor by the pH-regulation of electrolyte. Journal of Materials Chemistry A, 8(17), 8648–8660. https://doi.org/10.1039/d0ta02926b

Sundriyal, S., Shrivastav, V., Pham, H. D., Mishra, S., Deep, A., & Dubal, D. P. (2021). Advances in bio-waste derived activated carbon for supercapacitors: Trends, challenges and prospective. Resources, Conservation and Recycling, 169, 105548. https://doi.org/10.1016/j.resconrec.2021.105548

Tsay, K. C., Zhang, L., & Zhang, J. (2012). Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochimica Acta, 60, 428–436. https://doi.org/10.1016/j.electacta.2011.11.087

Wang, J., Li, Q., Peng, C., Shu, N., Niu, L., & Zhu, Y. (2020). To increase electrochemical performance of electrode material by attaching activated carbon particles on reduced graphene oxide sheets for supercapacitor. Journal of Power Sources, 450, 227611. https://doi.org/10.1016/j.jpowsour.2019

Wang, Y., Zhang, L., Hou, H., Xu, W., Duan, G., He, S., Liu, K., & Jiang, S. (2021). Recent progress in carbon-based materials for supercapacitor electrodes: A review. Journal of Materials Science, 56(1), 173–200. https://doi.org/10.1007/s10853-020-05157-6

Wei, L., Deng, W., Li, S., Wu, Z., Cai, J., & Luo, J. (2022). Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors. Journal of Bioresources and Bioproducts, 7(1), 63-72.

Xu, J., Wang, X., Zhou, X., Yuan, N., Ge, S., & Ding, J. (2019). Activated carbon coated CNT core-shell nanocomposite for supercapacitor electrode with excellent rate performance at low temperature. Electrochimica Acta, 301, 478–486. https://doi.org/10.1016/j.electacta.2019.02.021

Xu, T., Yang, D., Zhang, S., Zhao, T., Zhang, M., & Yu, Z. Z. (2021). Antifreezing and stretchable all-gel-state supercapacitor with enhanced capacitances established by graphene/PEDOT-polyvinyl alcohol hydrogel fibers with dual networks. Carbon, 171, 201–210. https://doi.org/10.1016/j.carbon.2020.08.071

Yadlapalli, R. T., Alla, R. K. R., Kandipati, R., & Kotapati, A. (2022). Super capacitors for energy storage: Progress, applications and challenges. Journal of Energy Storage, 49, 104194. https://doi.org/10.1016/j.est.2022.104194.




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v12i2.18135

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.