Electrochemical Properties of Activated Carbon Electrodes for Supercapacitor Application: The Effect of Various Electrolyte Concentrations of Na2SO4
Abstract
Keywords
Full Text:
PDFReferences
Al Jahdaly, B. A., Abu-Rayyan, A., Taher, M. M., & Shoueir, K. (2022). Phytosynthesis of Co3O4 nanoparticles as the high energy storage material of an activated carbon/Co3O4 symmetric supercapacitor device with excellent cyclic stability based on a Na2SO4 aqueous electrolyte. ACS Omega, 7(27), 23673–23684. https://doi.org/10.1021/acsomega.2c02305
Arief, R. K., Armila, A., Liswardi, A., Yahya, H., Warimani, M. S., & Putera, P. (2023). Coconut shell carbonization process using smokeless kiln. Journal of Applied Agricultural Science and Technology, 7(2), 82–90. https://doi.org/10.55043/jaast.v7i2.135
Awitdrus, A., Hanifa, Z., Agustino, A., Taer, E., & Farma, R. (2022). Perbandingan larutan elektrolit H2SO4 dan KOH pada kinerja elektrokimia bahan elektroda berbasis karbon aktif sabut kelapa muda. Jurnal Litbang Industri, 12(1), 15-20. https://doi.org/10.24960/jli.v12i1.7206
Cao, X., Jiang, C., Sun, N., Tan, D., Li, Q., Bi, S., & Song, J. (2021). Recent progress in multifunctional hydrogel-based supercapacitors. Journal of Science: Advanced Materials and Devices, 6(3), 338–350. https://doi.org/10.1016/j.jsamd.2021.06.002
Chen, Z., Wang, X., Ding, Z., Wei, Q., Wang, Z., Yang, X., & Qiu, J. (2019). Biomass-based hierarchical porous carbon for supercapacitors: effect of aqueous and organic electrolytes on the electrochemical performance. ChemSusChem, 12(23), 5099–5110. https://doi.org/10.1002/cssc.201902218
Cheng, F., Yang, X., Zhang, S., & Lu, W. (2020). Boosting the supercapacitor performances of activated carbon with carbon nanomaterials. Journal of Power Sources, 450, 227678. https://doi.org/10.1016/j.jpowsour.2019.227678
Du, X., Qin, Z., & Li, Z. (2021). Free-standing rGO-CNT nanocomposites with excellent rate capability and cycling stability for Na2So4 aqueous electrolyte supercapacitors. Nanomaterials, 11(6), 1420. https://doi.org/10.3390/nano11061420
Ghosh, S., Santhosh, R., Jeniffer, S., Raghavan, V., Jacob, G., Nanaji, K., Kollu, P., Jeong, S. K., & Grace, A. N. (2019). Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Scientific Reports, 9(1), 16315. https://doi.org/10.1038/s41598-019-52006-x
Glogic, E., Kamali, A. K., Keppetipola, N. M., Alonge, B., Kumara, G. R. A., Sonnemann, G., Toupance, T., & Cojocaru, L. (2022). Life cycle assessment of supercapacitor electrodes based on activated carbon from coconut shells. ACS Sustainable Chemistry and Engineering, 10(46), 15025–15034. https://doi.org/10.1021/acssuschemeng.2c03239
González, A., Goikolea, E., Barrena, J. A., & Mysyk, R. (2016). Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189–1206). https://doi.org/10.1016/j.rser.2015.12.249
Guo, J., Ma, Y., Zhao, K., Wang, Y., Yang, B., Cui, J., & Yan, X. (2019). High-performance and ultra-stable aqueous supercapacitors based on a green and low-cost water-in-salt electrolyte. ChemElectroChem, 6(21), 5433–5438. https://doi.org/10.1002/celc.201901591
Haider, S., Murtaza, I., Shuja, A., Abid, R., Ali, H., Asghar, M. A., & Khan, Y. (2022). Enhanced energy density of PANI/Co3O4/graphene ternary nanocomposite in a neutral aqueous electrolyte of Na2SO4 for supercapacitor applications. Journal of Electronic Materials, 51(9), 5417–5428. https://doi.org/10.1007/s11664-022-09788-0
Hajar, S., Har, N. P., Irmansyah, I., Arif, A., & Irzaman, I. (2022). Optimization of oxygen flow valve holes in small industrial scale husk furnaces. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 11(2), 255–265. https://doi.org/10.24042/jipfalbiruni.v11i2.14291
Huang, S., Zhu, X., Sarkar, S., & Zhao, Y. (2019). Challenges and opportunities for supercapacitors. APL Materials, 7(10). https://doi.org/10.1063/1.5116146
Iro, Z. S., Subramani, C., & Dash, S. S. (2016). A brief review on electrode materials for supercapacitor. International Journal of Electrochemical Science, 11(12), 10628–10643. https://doi.org/10.20964/2016.12.50
Keppetipola, N. M., Dissanayake, M., Dissanayake, P., Karunarathne, B., Dourges, M. A., Talaga, D., Servant, L., Olivier, C., Toupance, T., Uchida, S., Tennakone, K., Kumara, G. R. A., & Cojocaru, L. (2021). Graphite-type activated carbon from coconut shell: a natural source for eco-friendly non-volatile storage devices. RSC Advances, 11(5), 2854–2865. https://doi.org/10.1039/d0ra09182k
Krishnan, P., & Biju, V. (2021). Effect of electrolyte concentration on the electrochemical performance of RGO–KOH supercapacitor. Bulletin of Materials Science, 44, 1-11. https://doi.org/10.1007/s12034-021-02576-2
Kurniawan, W. B., Indriawati, A., Marina, D., & Taer, E. (2019). The potential of pepper shell (piper nigrum) for supercapacitor electrodes. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 8(1), 109–116. https://doi.org/10.24042/jipfalbiruni.v8i1.3780
Li, C., Wu, W., Wang, P., Zhou, W., Wang, J., Chen, Y., Fu, L., Zhu, Y., Wu, Y., & Huang, W. (2019). Fabricating an aqueous symmetric supercapacitor with a stable high working voltage of 2 V by using an alkaline–acidic electrolyte. Advanced Science, 6(1), 1801665. https://doi.org/10.1002/advs.201801665
Li, K., Luo, J., Wei, M., Yao, X., Feng, Q., Ma, X., & Liu, Z. (2022). Functional porous carbon derived from waste eucalyptus bark for toluene adsorption and aqueous symmetric supercapacitors. Diamond and Related Materials, 127, 109196. https://doi.org/10.1016/j.diamond.2022.109196
Lobato-Peralta, D. R., Amaro, R., Arias, D. M., Cuentas-Gallegos, A. K., Jaramillo-Quintero, O. A., Sebastian, P. J., & Okoye, P. U. (2021). Activated carbon from wasp hive for aqueous electrolyte supercapacitor application. Journal of Electroanalytical Chemistry, 901, 115777. https://doi.org/10.1016/j.jelechem.2021
Mishra, R. K., Choi, G. J., Sohn, Y., Lee, S. H., & Gwag, J. S. (2020). A novel RGO/N-RGO supercapacitor architecture for a wide voltage window, high energy density and long-life via voltage holding tests. Chemical Communications, 56(19), 2893–2896. https://doi.org/10.1039/d0cc00249f
Mohanadas, D., & Sulaiman, Y. (2022). Recent advances in development of electroactive composite materials for electrochromic and supercapacitor applications. Journal of Power Sources, 523, 231029. https://doi.org/10.1016/j.jpowsour.2022
Najib, S., & Erdem, E. (2019). Current progress achieved in novel materials for supercapacitor electrodes: Mini review. Nanoscale Advances, 1(8), 2817–2827. https://doi.org/10.1039/c9na00345b
Nguyen, T. B., Yoon, B., Nguyen, T. D., Oh, E., Ma, Y., Wang, M., & Suhr, J. (2023). A facile salt-templating synthesis route of bamboo-derived hierarchical porous carbon for supercapacitor applications. Carbon, 206, 383–391. https://doi.org/10.1016/j.carbon.2023.02.060
Novita, S. A., Santosa, S., Nofialdi, N., Andasuryani, A., Fudholi, A., & Putera, P. (2022). Fast pyrolysis of biomass with a concentrated solar power: A review. Journal of Applied Agricultural Science and Technology, 6(2), 180–191. https://doi.org/10.55043/jaast.v6i2.62
Pal, B., Yang, S., Ramesh, S., Thangadurai, V., & Jose, R. (2019). Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Advances, 1(10), 3807–3835. https://doi.org/10.1039/c9na00374f
Poonam, Sharma, K., Arora, A., & Tripathi, S. K. (2019). Review of supercapacitors: Materials and devices. Journal of Energy Storage, 21, 801–825. https://doi.org/10.1016/j.est.2019.01.010
Qin, W., Zhou, N., Wu, C., Xie, M., Sun, H., Guo, Y., & Pan, L. (2020). Mini-review on the redox additives in aqueous electrolyte for high performance supercapacitors. ACS Omega, 5(8), 3801–3808. https://doi.org/10.1021/acsomega.9b04063
Saikia, B. K., Benoy, S. M., Bora, M., Tamuly, J., Pandey, M., & Bhattacharya, D. (2020). A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel, 282, 118796. https://doi.org/10.1016/j.fuel.2020.118796
Sharma, P., & Kumar, V. (2020). Current technology of supercapacitors: A review. Journal of Electronic Materials, 49(6), 3520–3532. https://doi.org/10.1007/s11664-020-07992-4
Sivachidambaram, M., Vijaya, J. J., Niketha, K., Kennedy, L. J., Elanthamilan, E., & Merlin, J. P. (2019). Electrochemical studies on tamarindus indica fruit shell bio-waste derived nanoporous activated carbons for supercapacitor applications. Journal of Nanoscience and Nanotechnology, 19(6), 3388-3397.
Su, L., Zhang, Q., Wang, Y., Meng, J., Xu, Y., Liu, L., & Yan, X. (2020). Achieving a 2.7 V aqueous hybrid supercapacitor by the pH-regulation of electrolyte. Journal of Materials Chemistry A, 8(17), 8648–8660. https://doi.org/10.1039/d0ta02926b
Sundriyal, S., Shrivastav, V., Pham, H. D., Mishra, S., Deep, A., & Dubal, D. P. (2021). Advances in bio-waste derived activated carbon for supercapacitors: Trends, challenges and prospective. Resources, Conservation and Recycling, 169, 105548. https://doi.org/10.1016/j.resconrec.2021.105548
Tsay, K. C., Zhang, L., & Zhang, J. (2012). Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochimica Acta, 60, 428–436. https://doi.org/10.1016/j.electacta.2011.11.087
Wang, J., Li, Q., Peng, C., Shu, N., Niu, L., & Zhu, Y. (2020). To increase electrochemical performance of electrode material by attaching activated carbon particles on reduced graphene oxide sheets for supercapacitor. Journal of Power Sources, 450, 227611. https://doi.org/10.1016/j.jpowsour.2019
Wang, Y., Zhang, L., Hou, H., Xu, W., Duan, G., He, S., Liu, K., & Jiang, S. (2021). Recent progress in carbon-based materials for supercapacitor electrodes: A review. Journal of Materials Science, 56(1), 173–200. https://doi.org/10.1007/s10853-020-05157-6
Wei, L., Deng, W., Li, S., Wu, Z., Cai, J., & Luo, J. (2022). Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors. Journal of Bioresources and Bioproducts, 7(1), 63-72.
Xu, J., Wang, X., Zhou, X., Yuan, N., Ge, S., & Ding, J. (2019). Activated carbon coated CNT core-shell nanocomposite for supercapacitor electrode with excellent rate performance at low temperature. Electrochimica Acta, 301, 478–486. https://doi.org/10.1016/j.electacta.2019.02.021
Xu, T., Yang, D., Zhang, S., Zhao, T., Zhang, M., & Yu, Z. Z. (2021). Antifreezing and stretchable all-gel-state supercapacitor with enhanced capacitances established by graphene/PEDOT-polyvinyl alcohol hydrogel fibers with dual networks. Carbon, 171, 201–210. https://doi.org/10.1016/j.carbon.2020.08.071
Yadlapalli, R. T., Alla, R. K. R., Kandipati, R., & Kotapati, A. (2022). Super capacitors for energy storage: Progress, applications and challenges. Journal of Energy Storage, 49, 104194. https://doi.org/10.1016/j.est.2022.104194.
DOI: http://dx.doi.org/10.24042/jipfalbiruni.v12i2.18135
Refbacks
- There are currently no refbacks.
Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.