Thermodynamic and Magnetic Properties of Diatomic Molecules for Non-central Potentials under the Influence of External Magnetic Fields

Cari Cari, A Suparmi, Luthfiya Kurnia Permatahati

Abstract


This paper studies the thermodynamic and magnetic properties of some diatomic molecules governed by Scarf and Morse non-central potentials under external magnetic and electric fields. The Schrodinger equation with Scarf and Morse non-central potentials is solved using Supersymmetric WKB quantization conditions to obtain the energy equation and wave function. The influence of the magnetic and electric fields on the energy eigenvalue was discussed. The results show that energy increases with the increasing magnetic field and decreases with the increasing electric field. Moreover, the thermodynamic and magnetic properties involving internal energy, free energy, specific heat capacity, entropy, magnetization, magnetic susceptibility, and persistent current were determined by calculating the partition function. The internal energy increases linearly with the increasing magnetic field for a given temperature. Meanwhile, the specific heat capacity decreases with the increasing magnetic field. We point out that the presence of magnetic and electric fields makes the system exhibit diamagnetic behavior.

Keywords


Thermodynamic properties; magnetic properties; Schrodinger equation; noncentral potential; magnetic field

Full Text:

PDF

References


Abu-Shady, M., & Ikot, A. N. (2019). Analytic solution of multi-dimensional Schrödinger equation in hot and dense QCD media using the SUSYQM method. The European Physical Journal Plus volume, 134(321).

Ahmadov, A. I., Maria, N., Qocayeva, M. V., & Tarverdiyeva, V. A. (2018). Analytical Solutions of the Schrödinger Equation for the Manning-Rosen plus Hulthén Potential Within SUSY Quantum Mechanics. Journal of Physics: Conference Series, 965.

Assi, I. A., Ikot, A. N., & Chukwuocha, E. O. (2018). Solutions of the ?-Dimensional Schrödinger Equation with the Hyperbolic Pöschl-Teller Potential plus Modified Ring-Shaped Term. Advances in High Energy Physics, 2018, 1-10.

Bala, K. J., Peter, A. J., & Lee, C. W. (2017). Simultaneous effects of pressure and temperature on the optical transition energies in a Ga0. 7In0. 3N/GaN quantum ring. Chemical Physics, 495(1), 42-47.

Banger, S., Nayak, V., & Verma, U. P. (2018). Hydrogen storage in lithium hydride: A theoretical approach. Journal of Physics and Chemistry of Solids, 115, 6-17.

Bera, A., Ghosh, A., & Ghosh, M. (2019). Analyzing magnetic susceptibility of impurity doped quantum dots in presence of noise. Journal of Magnetism and Magnetic Materials, 484(1), 391-402.

Biswas, A., Pathak, A. K., Zarkevich, N. A., Xubo, L., Mudryk, Y., Balema, V., Johnson, D. D., & Pecharsky, V. K. (2019). Designed materials with the giant magnetocaloric effect near room temperature. Acta Materialia, 180(1), 341-348.

Castillo, D. E. A., & Kirchbach, M. (2007). Exact spectrum and wave functions of the hyperbolic Scarf potential in terms of finite Romanovski polynomials. Revista Mexicana de Fisica E, 53(2), 143-154.

Castro, P. B. D., Terashima, K., Yamamoto, T. D., Hou, Z., Iwasaki, S., Matsumoto, R., Adachi, S., Saito, Y., Song, P., Takeya, H., & Takano, Y. (2020). Machine-learning-guided discovery of the gigantic magnetocaloric effect in HoB2 near the hydrogen liquefaction temperature. NPG Asia Materials, 12(1), 1-7.

Comtet, A., Bandrauk, A. D., & Campbell, D. K. (1985). Exactness of Semiclassical Bound State Energies for Supersymmetric Quantum Mechanics. Physics Reviews D, 36(8).

Dabrowaska, J. W., Khare, A., & Sukhatme, P. (1988). Explicit wavefunctions for shape-invariant potentials by operator techniques. Journal of Physics A: Mathematical and General, 21(4), L195-L200.

Dianawati, D. A., Suparmi, A., & Cari, C. (2019). Study of Schrodinger Equation with Quantum Deformation for Three-Dimensional Harmonic Oscillator plus Inverse Quadratic Potential by Hypergeometric Method. International Journal of Advanced Trends in Computer Science and Engineering, 8(6), 2788-2793.

Dong, S., Dong, Q., Sun, G.-H., Femmam, S., & Dong, S.-H. (2018). Exact Solutions of the Razavy Cosine Type Potential. Advances in High Energy Physics, 2018, 1-6.

Dutt, R., Khare, A., & Sukhatme, U. P. (1988). Supersymmetry, Shape Invariance, and Exactly Solvable Potentials. American Journal of Physics, 56(2).

Edet, C. O., Amadi, P. O., Ettah, E. B., Ali, N., Asjad, M., & Ikot, A. N. (2022). The magnetocaloric effect, thermo-magnetic and transport properties of LiH diatomic molecule. Molecular Physics, 2022(1).

Edet, C. O., & Ikot, A. N. (2021). Effects of Topological Defect on the Energy Spectra and Thermo-magnetic Properties of CO Diatomic Molecule. Journal of Low Temperature Physics, 203(1).

Edet, C. O., Ikot, A. N., Onyeaju, M. C., Okorie, U. S., Rampho, G. J., Lekala, M. L., & Kaya, S. (2021). Thermo-magnetic properties of the screened Kratzer potential with spatially varying mass under the influence of Aharanov-Bohm (AB) and position-dependent magnetic fields. Physica E: Low-dimensional Systems and Nanostructures, , 131(114710), 1-14.

Fang, J., Zhou, Z., Xiao, M., Lou, Z., Wei, Z., & Shen, G. (2019). Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, 2020, 291-317.

Faniandari, S., Suparmi, A., & Cari, C. (2022). Study of thermomagnetic properties of the diatomic particle using hyperbolic function position dependent mass under the external hyperbolic magnetic and AB force. Molecular Physics, 120(12). https://doi.org/ https://doi.org/10.1080/00268976.2022.2083712

Faniandari, S., Suparmi, A., Cari, C., & Harjana, H. (2023). Study of Thermomagnetic Properties for Nonrelativistic Particle with Position Dependent Mass in the Presence of Topological Defect and External Magnetic Field: Theory and Simulation. International Journal of Theoretical Physics, 62(109).

Fuhrmann, B., Leipner, H. S., Hoche, H. R., Schubert, L., Werner, P., & Gosele, U. (2005). Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett, 5(12), 2524-2527. https://doi.org/10.1021/nl051856a

Gangopadhyaya, A., Bougie, J., & Rasinariu, C. (2021). Exactness of Semiclassical Quantization Rule for Broken Supersymmetry. Journal of Physics A: Mathematical and Theoretical

(29).

Gendenshtien, L. E. (1983). Derivation of exact spectra of the Schr0dinger equation by means of Supersymmetry. Journal of Experimental and Theoretical Physics Letters, 38(6), 356-359.

Gschneidner, K. A., Pecharsky, V. K., & Tsokol, A. O. (2005). Recent developments in magnetocaloric materials. Reports on progress in physics, 68(6), 1479-1539.

Hassanabadi, H., Chung, W. S., & Bhardwaj, S. B. (2018). ?-Deformed Morse and Oscillator Potential. Advances in High Energy Physics, 2017(1-5).

Hassanabadi, H., Maghsoodi, E., Ikot, A. N., & Zarrinkamar, S. (2018). Minimal Length Schrödinger Equation with Harmonic Potential in the Presence of a Magnetic Field. Advances in High Energy Physics, 2013, 1-7.

Houtot, A. (1973). Exact motion in noncentral electric fields Journal of Mathematical Physics, 14(10), 1320-1327.

Ikhdair, S. M., & Falaye, B. J. (2013). Approximate analytical solutions to relativistic and nonrelativistic Pöschl–Teller potential with its thermodynamic properties. Chemical Physics, 421, 84-95. https://doi.org/https://doi.org/10.1016/j.chemphys.2013.05.021

Ikhdair, S. M., & Hamzani, M. (2012). A quantum pseudodot system with two-dimensional pseudoharmonic oscillator in external magnetic and Aharonov-Bohm fields. Physica B: Condensed Matter, 407(21), 4198–4207.

Ikot, A. N., Okorie, U. S., Sever, R., & Rampho, G. J. (2019). Eigensolution, expectation values and thermodynamic properties of the screened Kratzer potential. European Physics Journal Plus, 134(1), 1-18.

Jia, C. S., Zhang, L.-H., Peng, X.-L., Luo, J.-X., Zhao, Y.-L., Liu, J.-Y., Guo, J.-J., & Tang, L.-D. (2019). Prediction of entropy and Gibbs free energy for nitrogen. Chemical Engineering Science, 202(1), 70-74.

Jia, C. S., Zhang, L. H., & Wang, C. W. (2017). Thermodynamic properties for the lithium dimer. Chemical Physics Letters, 667(1), 211–215.

Jiang, R., Jia, C. S., Wang, Y. Q., Peng, X. L., & Zhang, L. H. (2019). Prediction of enthalpy for the gases CO, HCl, and BF. Chemical Physics Letters, 715(1), 186-189.

Khordad, R., Mirhosseini, B., & Mirhosseini, M. M. (2019). Thermodynamic Properties of a GaAs Quantum Dot with an Effective‑Parabolic Potential: Theory and Simulation. Journal of Low Temperature Physics, 197(1), 95-110.

Khordad, R., & Sedehi, H. R. (2018). Thermodynamic Properties of a Double Ring-Shaped Quantum Dot at Low and High Temperatures. Journal of Low Temperature Physics, 190(3), 1-13.

Khosla, P., Arora, S., Gupta, Y., Priyanka, & Sharma, R. (2023). Hydrostatic Pressure Efect on the Thermodynamic Properties of Quantum Wire Under a Crossed Electromagnetic Field. Journal of Low Temperature Physics. https://doi.org/https://doi.org/10.1007/s10909-023-02990-2

Levai, G. (1994). Solvable potentials associated with su (1,1) algebras: a systematic study, . Journal of Physics A: Mathematical and General, 27(11), 3809-3828.

Li, B., Liu, W., Zhu, X., Lin, S., Yang, Y., Yang, Q., & Jin, P. (2019). Pressure-dependent photoluminescence of CdSe/ZnS quantum dots: critical point of different pressure regimes. Phys. Lett. A., 383(1483). https://doi.org/https://doi.org/10.1016/j

Li, H., & Kusnezov, D. (1999). Group theory approach to band structure: Scarf and Lamé Hamiltonians. Physical Review Letters, 83(7), 1283-1287.

Lin, Y. C., Chou, W. C., Susha, A. S., Kershaw, S. V., & Rogach, A. L. (2013). Photoluminescence and time-resolved carrier dynamics in thiol-capped CdTe nanocrystals under high pressure. Nanoscale 5(3400). https://doi.org/https://doi.org/10.1039/C3NR33928A

Mano, T., Kuroda, T., Sanguinetti, S., Ochiai, T., Tateno, T., Kim, J., Noda, T., Kawabe, M., Sakoda, K., Kido, G., & Koguchi, N. (2005). Self-assembly of concentric quantum double rings. Nano Letters, 5(3), 425-428.

Morse, P. M. (1929). Diatomic molecules according to the wave mechanics. II. Vibrational levels. Physical Review Letters, 34(1), 57-64.

Nikiforov, A. F., & Uvarov, V. B. (1988). Special Functions of Mathematical Physics. Springer.

Okon, I., & al., e. (2022). Approximate Solutions, Thermal Properties, and Superstatistics Solutions to Schrödinger Equation. Advances in High Energy Physics, 2022, 1-18.

Okon, I. B., Popoola, O., & Isonguyo, C. N. (2017). Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method. Advances in High Energy Physics, 2017, 1-25.

Okorie, U. S., Edet, C. O., Ikot, A. N., Rampho, G. J., & Sever, R. (2020). Thermodynamic functions for diatomic molecules with modified Kratzer plus screened Coulomb potential. Indian Journal of Physics, 95(3), 411-421.

Okorie, U. S., & Ibekwe, E. E. (2018). Thermodynamic Properties of the Modified Yukawa Potential. Journal of the Korean Physical Society, 73(9), 1211-1218.

Okorie, U. S., Ikot, A. N., Chukwuocha, E. O., & Rampho, G. J. (2020). Thermodynamic properties of improved deformed exponential-type potential (IDEP) for some diatomic molecules. Results in Physics, 17, 1-7.

Omar Mustafa, Z. A. (2020). PDM-charged particles in PD-magnetic plus Aharonov–Bohm flux fields: Unconfined “almost-quasi-free” and confined in a Yukawa plus Kratzer exact solvability. Chinese Journal of Physics, 65, 554-566.

Onate, C. A., Okoro, J. O., Adebimpe, O., & Lukman, A. F. (2018). Eigen solutions of the Schrӧdinger equation and the thermodynamic stability of the black hole temperature. Results in Physics, 10(1), 406-410.

Orabi, E. A., & Faraldo-Gómez, J. D. (2020). New Molecular-Mechanics Model for Simulations of Hydrogen Fluoride in Chemistry and Biology. J Chem Theory Comput., 16(8), 5105-5126.

Ortega, G. V., & Hernandez, L. A. (2018). Thermodynamic properties of diatomic molecule systems under SO (2, 1)‐anharmonic Eckart potential. International Journal of Quantum Chemistry, 118(14).

Pareek, A., Dom, R., Gupta, J., Chandran, J., Vivek Adepu, & Borse, P. H. (2020). Insights into renewable hydrogen energy: Recent advances and prospects. Materials Science for Energy Technologies, 3, 319-327.

Pekeris, C. L. (1934). The rotation-vibration coupling in diatomic molecules. Physical Review, 45(2), 98-103.

Peleshchak, R. M., Kuzyk, O. V., & Dan’kiv, O. O. (2020). The influence of the electrically inactive impurity on the energy spectrum of electron and hole in InAs/GaAs heterostructure with InAs quantum dots. Rom. J. Phys., 65(610).

Rosen, N., & Morse, P. M. (1932). On the Vibrations of Polyatomic Molecules. Physical Review, 42(1), 210-217.

Sedehi, H. R., & Khordad, R. (2021). Magnetocaloric effect, magnetic susceptibility and specific heat of tuned quantum dot/ring systems. Physica E: Low-dimensional Systems and Nanostructures,, 134, 1-6.

Solaimani, M. (2021). Effects of geometry and electric and magnetic fields on the thermal properties of two-dimensional semiconducting nanoporous superlattices. Journal of Physics and Chemistry, 149, 1-7.

Soopy, K. K., Li, Z., Tang, T., Sun, J., Xu, B., Zhao, C., & Najar, A. (2021). In (Ga) N Nanostructures and Devices Grown by Molecular Beam Epitaxy and Metal-Assisted Photochemical Etching. Nanomaterials, 11(126), 1-28.

Sukumar, C. V. (1985). Supersymmetric quantum mechanics of one-dimensional systems. Journal of Physics A: Mathematical and General, 18(15).

Suparmi, A., & Cari, C. (2014). Bound State Solution of Dirac Equation for Generalized Pöschl-Teller plus Trigomometric Pöschl-Teller Non- Central Potential Using SUSY Quantum Mechanics. Journal of Mathematical and Fundamental Sciences, 46(3).

Suparmi, A., Cari, C., & Faniandari, S. (2020). Eigen solutions of the Schrodinger equation with variable mass under the influence of the linear combination of modified Woods–Saxon and Eckart potentials in toroidal coordinate. MOLECULAR PHYSICS 118(24). https://doi.org/10.1080/00268976.2020.1781946

Vicente, A. G. J., Castro, L. B., & Obispo, A. E. (2021). Remarks on Thermodynamic Properties of a Double Ring-Shaped Quantum Dot at Low and High Temperatures. Journal of Low Temperature Physics, 202(3), 372-381.

Wang, N., Cai, Y., & Zhang, R. Q. (2008). Growth of nanowires. Materials Science and Engineering: R: Reports, 60(1-6), 1-51. https://doi.org/https://doi.org/10.1016/j.mser.2008.01.001

Warburg, E. (1881). Magnetische untersuchungen. Annalen der Physik, 249(5), 141-164.

Witten, E. (1981). Dynamical breaking of Supersymmetry. Nuclear Physics B, 188(3), 513-554.

Xiao, Z., Kang, Z., A., A., Bansihev, Breidenich, J., Scripka, D. A., Christensen, J. M., Summers, C. J., Dlott, D. D., Thadhani, N. N., & Zhou, M. (2016). Laser-excited optical emission response of CdTe quantum dot/polymer nanocomposite under shock compres-sion. Appl. Phys. Lett. , 108. https://doi.org/https://doi.org/10.1063/1.4939701

Yin, C., Cao, Z., & Shen, Q. (2010). Why SWKB approximation is exact for all SIPs. Annals of Physics, 325, 528-534.

Zeiri, N., Naifar, A., Abdi-Ben Nasrallah, S., & Said, M. (2019). Third nonlinear optical susceptibility of CdS/ZnS core-shell spherical quantum dots for optoelectronic devices. Optik, 176(2019), 162-167.

Zhang, Y., Hou, L., Ren, Z., Li, X., & Wilde, G. (2016). Magnetic properties and magnetocaloric effect in TmZnAl and TmAgAl compounds. Journal of Alloys and Compounds, 656(1), 635-639.

Zhang, Y. e. a. (2016). Study of the magnetic phase transitions and magnetocaloric effect in Dy2Cu2In compound. Journal of Alloys and Compounds, 667(1), 130-133.




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v12i2.18008

Refbacks



Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.