Thermodynamic and Magnetic Properties of Diatomic Molecules for Non-central Potentials under the Influence of External Magnetic Fields
Abstract
Keywords
Full Text:
PDFReferences
Abu-Shady, M., & Ikot, A. N. (2019). Analytic solution of multi-dimensional Schrödinger equation in hot and dense QCD media using the SUSYQM method. The European Physical Journal Plus volume, 134(321).
Ahmadov, A. I., Maria, N., Qocayeva, M. V., & Tarverdiyeva, V. A. (2018). Analytical Solutions of the Schrödinger Equation for the Manning-Rosen plus Hulthén Potential Within SUSY Quantum Mechanics. Journal of Physics: Conference Series, 965.
Assi, I. A., Ikot, A. N., & Chukwuocha, E. O. (2018). Solutions of the ?-Dimensional Schrödinger Equation with the Hyperbolic Pöschl-Teller Potential plus Modified Ring-Shaped Term. Advances in High Energy Physics, 2018, 1-10.
Bala, K. J., Peter, A. J., & Lee, C. W. (2017). Simultaneous effects of pressure and temperature on the optical transition energies in a Ga0. 7In0. 3N/GaN quantum ring. Chemical Physics, 495(1), 42-47.
Banger, S., Nayak, V., & Verma, U. P. (2018). Hydrogen storage in lithium hydride: A theoretical approach. Journal of Physics and Chemistry of Solids, 115, 6-17.
Bera, A., Ghosh, A., & Ghosh, M. (2019). Analyzing magnetic susceptibility of impurity doped quantum dots in presence of noise. Journal of Magnetism and Magnetic Materials, 484(1), 391-402.
Biswas, A., Pathak, A. K., Zarkevich, N. A., Xubo, L., Mudryk, Y., Balema, V., Johnson, D. D., & Pecharsky, V. K. (2019). Designed materials with the giant magnetocaloric effect near room temperature. Acta Materialia, 180(1), 341-348.
Castillo, D. E. A., & Kirchbach, M. (2007). Exact spectrum and wave functions of the hyperbolic Scarf potential in terms of finite Romanovski polynomials. Revista Mexicana de Fisica E, 53(2), 143-154.
Castro, P. B. D., Terashima, K., Yamamoto, T. D., Hou, Z., Iwasaki, S., Matsumoto, R., Adachi, S., Saito, Y., Song, P., Takeya, H., & Takano, Y. (2020). Machine-learning-guided discovery of the gigantic magnetocaloric effect in HoB2 near the hydrogen liquefaction temperature. NPG Asia Materials, 12(1), 1-7.
Comtet, A., Bandrauk, A. D., & Campbell, D. K. (1985). Exactness of Semiclassical Bound State Energies for Supersymmetric Quantum Mechanics. Physics Reviews D, 36(8).
Dabrowaska, J. W., Khare, A., & Sukhatme, P. (1988). Explicit wavefunctions for shape-invariant potentials by operator techniques. Journal of Physics A: Mathematical and General, 21(4), L195-L200.
Dianawati, D. A., Suparmi, A., & Cari, C. (2019). Study of Schrodinger Equation with Quantum Deformation for Three-Dimensional Harmonic Oscillator plus Inverse Quadratic Potential by Hypergeometric Method. International Journal of Advanced Trends in Computer Science and Engineering, 8(6), 2788-2793.
Dong, S., Dong, Q., Sun, G.-H., Femmam, S., & Dong, S.-H. (2018). Exact Solutions of the Razavy Cosine Type Potential. Advances in High Energy Physics, 2018, 1-6.
Dutt, R., Khare, A., & Sukhatme, U. P. (1988). Supersymmetry, Shape Invariance, and Exactly Solvable Potentials. American Journal of Physics, 56(2).
Edet, C. O., Amadi, P. O., Ettah, E. B., Ali, N., Asjad, M., & Ikot, A. N. (2022). The magnetocaloric effect, thermo-magnetic and transport properties of LiH diatomic molecule. Molecular Physics, 2022(1).
Edet, C. O., & Ikot, A. N. (2021). Effects of Topological Defect on the Energy Spectra and Thermo-magnetic Properties of CO Diatomic Molecule. Journal of Low Temperature Physics, 203(1).
Edet, C. O., Ikot, A. N., Onyeaju, M. C., Okorie, U. S., Rampho, G. J., Lekala, M. L., & Kaya, S. (2021). Thermo-magnetic properties of the screened Kratzer potential with spatially varying mass under the influence of Aharanov-Bohm (AB) and position-dependent magnetic fields. Physica E: Low-dimensional Systems and Nanostructures, , 131(114710), 1-14.
Fang, J., Zhou, Z., Xiao, M., Lou, Z., Wei, Z., & Shen, G. (2019). Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, 2020, 291-317.
Faniandari, S., Suparmi, A., & Cari, C. (2022). Study of thermomagnetic properties of the diatomic particle using hyperbolic function position dependent mass under the external hyperbolic magnetic and AB force. Molecular Physics, 120(12). https://doi.org/ https://doi.org/10.1080/00268976.2022.2083712
Faniandari, S., Suparmi, A., Cari, C., & Harjana, H. (2023). Study of Thermomagnetic Properties for Nonrelativistic Particle with Position Dependent Mass in the Presence of Topological Defect and External Magnetic Field: Theory and Simulation. International Journal of Theoretical Physics, 62(109).
Fuhrmann, B., Leipner, H. S., Hoche, H. R., Schubert, L., Werner, P., & Gosele, U. (2005). Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett, 5(12), 2524-2527. https://doi.org/10.1021/nl051856a
Gangopadhyaya, A., Bougie, J., & Rasinariu, C. (2021). Exactness of Semiclassical Quantization Rule for Broken Supersymmetry. Journal of Physics A: Mathematical and Theoretical
(29).
Gendenshtien, L. E. (1983). Derivation of exact spectra of the Schr0dinger equation by means of Supersymmetry. Journal of Experimental and Theoretical Physics Letters, 38(6), 356-359.
Gschneidner, K. A., Pecharsky, V. K., & Tsokol, A. O. (2005). Recent developments in magnetocaloric materials. Reports on progress in physics, 68(6), 1479-1539.
Hassanabadi, H., Chung, W. S., & Bhardwaj, S. B. (2018). ?-Deformed Morse and Oscillator Potential. Advances in High Energy Physics, 2017(1-5).
Hassanabadi, H., Maghsoodi, E., Ikot, A. N., & Zarrinkamar, S. (2018). Minimal Length Schrödinger Equation with Harmonic Potential in the Presence of a Magnetic Field. Advances in High Energy Physics, 2013, 1-7.
Houtot, A. (1973). Exact motion in noncentral electric fields Journal of Mathematical Physics, 14(10), 1320-1327.
Ikhdair, S. M., & Falaye, B. J. (2013). Approximate analytical solutions to relativistic and nonrelativistic Pöschl–Teller potential with its thermodynamic properties. Chemical Physics, 421, 84-95. https://doi.org/https://doi.org/10.1016/j.chemphys.2013.05.021
Ikhdair, S. M., & Hamzani, M. (2012). A quantum pseudodot system with two-dimensional pseudoharmonic oscillator in external magnetic and Aharonov-Bohm fields. Physica B: Condensed Matter, 407(21), 4198–4207.
Ikot, A. N., Okorie, U. S., Sever, R., & Rampho, G. J. (2019). Eigensolution, expectation values and thermodynamic properties of the screened Kratzer potential. European Physics Journal Plus, 134(1), 1-18.
Jia, C. S., Zhang, L.-H., Peng, X.-L., Luo, J.-X., Zhao, Y.-L., Liu, J.-Y., Guo, J.-J., & Tang, L.-D. (2019). Prediction of entropy and Gibbs free energy for nitrogen. Chemical Engineering Science, 202(1), 70-74.
Jia, C. S., Zhang, L. H., & Wang, C. W. (2017). Thermodynamic properties for the lithium dimer. Chemical Physics Letters, 667(1), 211–215.
Jiang, R., Jia, C. S., Wang, Y. Q., Peng, X. L., & Zhang, L. H. (2019). Prediction of enthalpy for the gases CO, HCl, and BF. Chemical Physics Letters, 715(1), 186-189.
Khordad, R., Mirhosseini, B., & Mirhosseini, M. M. (2019). Thermodynamic Properties of a GaAs Quantum Dot with an Effective‑Parabolic Potential: Theory and Simulation. Journal of Low Temperature Physics, 197(1), 95-110.
Khordad, R., & Sedehi, H. R. (2018). Thermodynamic Properties of a Double Ring-Shaped Quantum Dot at Low and High Temperatures. Journal of Low Temperature Physics, 190(3), 1-13.
Khosla, P., Arora, S., Gupta, Y., Priyanka, & Sharma, R. (2023). Hydrostatic Pressure Efect on the Thermodynamic Properties of Quantum Wire Under a Crossed Electromagnetic Field. Journal of Low Temperature Physics. https://doi.org/https://doi.org/10.1007/s10909-023-02990-2
Levai, G. (1994). Solvable potentials associated with su (1,1) algebras: a systematic study, . Journal of Physics A: Mathematical and General, 27(11), 3809-3828.
Li, B., Liu, W., Zhu, X., Lin, S., Yang, Y., Yang, Q., & Jin, P. (2019). Pressure-dependent photoluminescence of CdSe/ZnS quantum dots: critical point of different pressure regimes. Phys. Lett. A., 383(1483). https://doi.org/https://doi.org/10.1016/j
Li, H., & Kusnezov, D. (1999). Group theory approach to band structure: Scarf and Lamé Hamiltonians. Physical Review Letters, 83(7), 1283-1287.
Lin, Y. C., Chou, W. C., Susha, A. S., Kershaw, S. V., & Rogach, A. L. (2013). Photoluminescence and time-resolved carrier dynamics in thiol-capped CdTe nanocrystals under high pressure. Nanoscale 5(3400). https://doi.org/https://doi.org/10.1039/C3NR33928A
Mano, T., Kuroda, T., Sanguinetti, S., Ochiai, T., Tateno, T., Kim, J., Noda, T., Kawabe, M., Sakoda, K., Kido, G., & Koguchi, N. (2005). Self-assembly of concentric quantum double rings. Nano Letters, 5(3), 425-428.
Morse, P. M. (1929). Diatomic molecules according to the wave mechanics. II. Vibrational levels. Physical Review Letters, 34(1), 57-64.
Nikiforov, A. F., & Uvarov, V. B. (1988). Special Functions of Mathematical Physics. Springer.
Okon, I., & al., e. (2022). Approximate Solutions, Thermal Properties, and Superstatistics Solutions to Schrödinger Equation. Advances in High Energy Physics, 2022, 1-18.
Okon, I. B., Popoola, O., & Isonguyo, C. N. (2017). Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method. Advances in High Energy Physics, 2017, 1-25.
Okorie, U. S., Edet, C. O., Ikot, A. N., Rampho, G. J., & Sever, R. (2020). Thermodynamic functions for diatomic molecules with modified Kratzer plus screened Coulomb potential. Indian Journal of Physics, 95(3), 411-421.
Okorie, U. S., & Ibekwe, E. E. (2018). Thermodynamic Properties of the Modified Yukawa Potential. Journal of the Korean Physical Society, 73(9), 1211-1218.
Okorie, U. S., Ikot, A. N., Chukwuocha, E. O., & Rampho, G. J. (2020). Thermodynamic properties of improved deformed exponential-type potential (IDEP) for some diatomic molecules. Results in Physics, 17, 1-7.
Omar Mustafa, Z. A. (2020). PDM-charged particles in PD-magnetic plus Aharonov–Bohm flux fields: Unconfined “almost-quasi-free” and confined in a Yukawa plus Kratzer exact solvability. Chinese Journal of Physics, 65, 554-566.
Onate, C. A., Okoro, J. O., Adebimpe, O., & Lukman, A. F. (2018). Eigen solutions of the Schrӧdinger equation and the thermodynamic stability of the black hole temperature. Results in Physics, 10(1), 406-410.
Orabi, E. A., & Faraldo-Gómez, J. D. (2020). New Molecular-Mechanics Model for Simulations of Hydrogen Fluoride in Chemistry and Biology. J Chem Theory Comput., 16(8), 5105-5126.
Ortega, G. V., & Hernandez, L. A. (2018). Thermodynamic properties of diatomic molecule systems under SO (2, 1)‐anharmonic Eckart potential. International Journal of Quantum Chemistry, 118(14).
Pareek, A., Dom, R., Gupta, J., Chandran, J., Vivek Adepu, & Borse, P. H. (2020). Insights into renewable hydrogen energy: Recent advances and prospects. Materials Science for Energy Technologies, 3, 319-327.
Pekeris, C. L. (1934). The rotation-vibration coupling in diatomic molecules. Physical Review, 45(2), 98-103.
Peleshchak, R. M., Kuzyk, O. V., & Dan’kiv, O. O. (2020). The influence of the electrically inactive impurity on the energy spectrum of electron and hole in InAs/GaAs heterostructure with InAs quantum dots. Rom. J. Phys., 65(610).
Rosen, N., & Morse, P. M. (1932). On the Vibrations of Polyatomic Molecules. Physical Review, 42(1), 210-217.
Sedehi, H. R., & Khordad, R. (2021). Magnetocaloric effect, magnetic susceptibility and specific heat of tuned quantum dot/ring systems. Physica E: Low-dimensional Systems and Nanostructures,, 134, 1-6.
Solaimani, M. (2021). Effects of geometry and electric and magnetic fields on the thermal properties of two-dimensional semiconducting nanoporous superlattices. Journal of Physics and Chemistry, 149, 1-7.
Soopy, K. K., Li, Z., Tang, T., Sun, J., Xu, B., Zhao, C., & Najar, A. (2021). In (Ga) N Nanostructures and Devices Grown by Molecular Beam Epitaxy and Metal-Assisted Photochemical Etching. Nanomaterials, 11(126), 1-28.
Sukumar, C. V. (1985). Supersymmetric quantum mechanics of one-dimensional systems. Journal of Physics A: Mathematical and General, 18(15).
Suparmi, A., & Cari, C. (2014). Bound State Solution of Dirac Equation for Generalized Pöschl-Teller plus Trigomometric Pöschl-Teller Non- Central Potential Using SUSY Quantum Mechanics. Journal of Mathematical and Fundamental Sciences, 46(3).
Suparmi, A., Cari, C., & Faniandari, S. (2020). Eigen solutions of the Schrodinger equation with variable mass under the influence of the linear combination of modified Woods–Saxon and Eckart potentials in toroidal coordinate. MOLECULAR PHYSICS 118(24). https://doi.org/10.1080/00268976.2020.1781946
Vicente, A. G. J., Castro, L. B., & Obispo, A. E. (2021). Remarks on Thermodynamic Properties of a Double Ring-Shaped Quantum Dot at Low and High Temperatures. Journal of Low Temperature Physics, 202(3), 372-381.
Wang, N., Cai, Y., & Zhang, R. Q. (2008). Growth of nanowires. Materials Science and Engineering: R: Reports, 60(1-6), 1-51. https://doi.org/https://doi.org/10.1016/j.mser.2008.01.001
Warburg, E. (1881). Magnetische untersuchungen. Annalen der Physik, 249(5), 141-164.
Witten, E. (1981). Dynamical breaking of Supersymmetry. Nuclear Physics B, 188(3), 513-554.
Xiao, Z., Kang, Z., A., A., Bansihev, Breidenich, J., Scripka, D. A., Christensen, J. M., Summers, C. J., Dlott, D. D., Thadhani, N. N., & Zhou, M. (2016). Laser-excited optical emission response of CdTe quantum dot/polymer nanocomposite under shock compres-sion. Appl. Phys. Lett. , 108. https://doi.org/https://doi.org/10.1063/1.4939701
Yin, C., Cao, Z., & Shen, Q. (2010). Why SWKB approximation is exact for all SIPs. Annals of Physics, 325, 528-534.
Zeiri, N., Naifar, A., Abdi-Ben Nasrallah, S., & Said, M. (2019). Third nonlinear optical susceptibility of CdS/ZnS core-shell spherical quantum dots for optoelectronic devices. Optik, 176(2019), 162-167.
Zhang, Y., Hou, L., Ren, Z., Li, X., & Wilde, G. (2016). Magnetic properties and magnetocaloric effect in TmZnAl and TmAgAl compounds. Journal of Alloys and Compounds, 656(1), 635-639.
Zhang, Y. e. a. (2016). Study of the magnetic phase transitions and magnetocaloric effect in Dy2Cu2In compound. Journal of Alloys and Compounds, 667(1), 130-133.
DOI: http://dx.doi.org/10.24042/jipfalbiruni.v12i2.18008
Refbacks
Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.