Learning Analytics Approach to Improve Multiple Representation Skills in Direct-Current Circuits
Abstract
Keywords
Full Text:
PDFReferences
Adejo, O., & Connolly, T. (2017). Learning Analytics in Higher Education Development : A Roadmap. Journal of Education and Practice, 8(15), 156–163.
Aiken, L. R. (1985). Three Coefficients For Analyzing The Reliability And Validity Of Ratings. Educational and Psychological Measurement, 45, 131–141. https://journals.sagepub.com/doi/abs/10.1177/0013164485451012
Airey, J., Linder, C., Treagust, D. F., ..., Duit, R., & Fischer, H. E. (2017). Multiple representations in physics education. In … Education. https://link.springer.com/content/pdf/10.1007/978-3-319-58914-5.pdf
Altmeyer, K., Kapp, S., Thees, M., Malone, S., Kuhn, J., & Brünken, R. (2020). The use of augmented reality to foster conceptual knowledge acquisition in STEM laboratory courses—Theoretical background and empirical results. British Journal of Educational Technology, 51(3), 611–628. https://doi.org/10.1111/bjet.12900
Buckingham Shum, S., & Deakin Crick, R. (2016). Learning Analytics for 21st Century Competencies. Journal of Learning Analytics, 3(2), 6–21. https://doi.org/10.18608/jla.2016.32.2
Clow, D. (2013). An overview of learning analytics. Teaching in Higher Education, 18(6), 683–695. https://doi.org/10.1080/13562517.2013.827653
Darihastining, S., Utomo, E. S., & Chalimah. (2021). The effectiveness of communication and online language disruption during the era of pandemic covid-19 in senior high school students in implementation of learning cycle 7e. Journal of Physics: Conference Series, 1722(1). https://doi.org/10.1088/1742-6596/1722/1/012024
Dawson, S., Joksimovic, S., Poquet, O., & Siemens, G. (2019). Increasing the impact of learning analytics. ACM International Conference Proceeding Series, March, 446–455. https://doi.org/10.1145/3303772.3303784
Elias, T. (2011). Learning Analytics : Definitions , Processes and Potential. 1–23.
Fidan, M., & Tuncel, M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. In Computers and Education (Vol. 142). Elsevier Ltd. https://doi.org/10.1016/j.compedu.2019.103635
Foung, D., & Chen, J. (2019). A Learning Analytics Approach to the Evaluation of an Online Learning Package in a Hong Kong University. Electronic Journal of E-Learning, 17(1), 11–24.
Hermino, A., & Arifin, I. (2020). Contextual character education for students in the senior high school. European Journal of Educational Research, 9(3), 1009–1023. https://doi.org/10.12973/EU-JER.9.3.1009
Lahope, K. S., Tulandi, D. A., & Mongan, S. W. (2020). Studi Kompetensi Multirepresentasi Mahasiswa pada Topik Interferensi dan Difraksi. Jurnal Pendidikan Fisika, 1(3), 90–94.
Lawson, C., Beer, C., Rossi, D., Moore, T., & Fleming, J. (2016). Identification of ‘at risk’ students using learning analytics: the ethical dilemmas of intervention strategies in a higher education institution. Educational Technology Research and Development, 64(5), 957–968. https://doi.org/10.1007/s11423-016-9459-0
Liliarti, N., & Kuswanto, H. (2018). Improving the competence of diagrammatic and argumentative representation in physics through android-based mobile learning application. International Journal of Instruction, 11(3), 106–122. https://doi.org/10.12973/iji.2018.1138a
Little, T. D., Chang, R., Gorrall, B. K., Waggenspack, L., Fukuda, E., Allen, P. J., & Noam, G. G. (2020). The retrospective pretest–posttest design redux: On its validity as an alternative to traditional pretest–posttest measurement. International Journal of Behavioral Development, 44(2), 175–183. https://doi.org/10.1177/0165025419877973
Mainali, B. (2021). Representation in teaching and learning mathematics. International Journal of Education in Mathematics, Science and Technology, 9(1), 1–21. https://doi.org/10.46328/ijemst.1111
Masrifah, M., Setiawan, A., Sinaga, P., & Setiawan, W. (2020). An Investigation of Physics Teachers’ Multiple Representation Ability on Newton’s Law Concept. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 6(1), 105–112. https://doi.org/10.21009/1.06112
Nuha, A. A., Kuswanto, H., Apriani, E., & Hapsari, W. P. (2021). Learning Physics with Worksheet Assisted Augmented Reality: The Impacts on Student’s Verbal Representation. Proceedings of the 6th International Seminar on Science Education (ISSE 2020), 541(Isse 2020), 461–469. https://doi.org/10.2991/assehr.k.210326.066
Prahani, B. K., W.W, S., & Yuanita, L. (2017). Pengembangan Perangkat Pembelajaran Fisika Model Inkuiri Terbimbing Untuk Melatihkan Kemampuan Multi Representasi Siswa Sma. JPPS (Jurnal Penelitian Pendidikan Sains), 4(2), 503. https://doi.org/10.26740/jpps.v4n2.p503-517
Ranjeeth, S., Latchoumi, T. P., & Paul, P. V. (2020). A Survey on Predictive Models of Learning Analytics. Procedia Computer Science, 167(2018), 37–46. https://doi.org/10.1016/j.procs.2020.03.180
Sarabi, M. K., & Gafoor, K. A. (2018). Student perception on nature of subjects : Impact on difficulties in learning high school physics , chemistry and biology. Innovations and Researches in Education, 8(1), 42–55.
Sari, D., Sudarti, S., & Bektiarso, S. (2019). Analisis Kesalahan Siswa Mengerjakan Soal Un Materi Rangkaian Arus Listrik Searah Menggunakan Metode Polya. FKIP E-PROCEEDING; Vol 3 No 2 (2018): Prosiding Seminar Nasional Pendidikan Fisika, 3(2), 235–240. https://jurnal.unej.ac.id/index.php/fkip-epro/article/view/9428
Sholihah, N., Wilujeng, I., & Purwanti, S. (2020). Development of android-based learning media on light reflection material to improve the critical thinking skill of high school students. Journal of Physics: Conference Series, 1440(1). https://doi.org/10.1088/1742-6596/1440/1/012034
Sun, F. R., Hu, H. Z., Wan, R. G., Fu, X., & Wu, S. J. (2022). A learning analytics approach to investigating pre-service teachers’ change of concept of engagement in the flipped classroom. Interactive Learning Environments, 30(2), 376–392. https://doi.org/10.1080/10494820.2019.1660996
Susdarwati, S., Dimas, A., & Hannum, F. (2021). The development of scientific literacy-based physics learning module on direct current circuit material. Journal of Physics: Conference Series, 1869(1). https://doi.org/10.1088/1742-6596/1869/1/012164
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98–110. https://doi.org/10.1016/j.chb.2018.07.027
Yuliati, L., Riantoni, C., & Mufti, N. (2018). Problem solving skills on direct current electricity through inquiry-based learning with PhET simulations. International Journal of Instruction, 11(4), 123–138. https://doi.org/10.12973/iji.2018.1149a
DOI: http://dx.doi.org/10.24042/jipfalbiruni.v13i1.14514
Refbacks
- There are currently no refbacks.
Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.