The performances of undershot waterwheel with butterfly-shaped blades and the radius of grasshopper's elbow: The utilization efforts for river electrical energy potential

Suhartono Suhartono, Rahmat Rudianto, Sri Fatmawati, Saiful Aziz

Abstract


Based on the amount of discharge or current, the river flows in Central Kalimantan have the potential to produce electrical energy. The purposes of this study were to design an undershot type of floating waterwheel and to test the effective bending angle at the radius of the grasshopper elbow in producing the most optimum power. This research uses experimental methods. The tools used are: mobile phone, multimeter, the gate of light, timer counter, flow rate, and the dimensions of the waterwheel diameter is 6 meters. Grasshopper angles vary from 0°, 30°, 45°, 60o, and 90° with a submerged blade depth of 0.24 m. The results showed that the undershot waterwheel with a flexible pinwheel (like a grasshopper's elbow) produced a faster and more effective rotation than a wheel with a fixed pinwheel and blades. Because the waterwheel has a flexible pinwheel and the butterfly blades experience little resistance when moving in water, the wheel generates more electrical energy than a wheel with fixed pinwheels and blades.At the angle of bending of the radius of the grasshopper blade 30º with the butterfly blade, it produces more optimal electrical energy than angles 0°, 45°, 60o, and 90°. Suggestions for further research are to test the waterwheel in weak and medium current rivers

Keywords


water wheel, undershot, butterfly blade, grasshopper elbow, pico hydro

Full Text:

PDF

References


Adanta, D., Kurnianto, M. A. F., Warjito, W., Nasution, S. B. S., & Budiarso. (2020). Effect of the number of blades on undershot waterwheel performance for straight blades. IOP Conference Series: Earth and Environmental Science, 431(1). https://doi.org/10.1088/1755-1315/431/1/012024

Adanta, D., Budiarso, Warjito, & Siswantara, A. I. (2018). Assessment of turbulence modeling for numerical simulations into pico hydro turbine. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 46(1), 21–31.

Adanta, D., Budiarso, Warjito, Siswantara, A. I., & Prakoso, A. P. (2018). Performance comparison of NACA 6509 and 6712 on pico hydro type cross-flow turbine by numerical method. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 45(1), 116–127.

Ali, B., & Kumar, A. (2017). Development of water demand coefficients for power generation from renewable energy technologies. Energy Conversion and Management, 143, 470–481. https://doi.org/10.1016/j.enconman.2017.04.028

Arias-Gaviria, J., van der Zwaan, B., Kober, T., & Arango-Aramburo, S. (2017). The prospects for Small Hydropower in Colombia. Renewable Energy, 107, 204–214. https://doi.org/10.1016/j.renene.2017.01.054

Balkhair, K. S., & Rahman, K. U. (2017). Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale. Applied Energy, 188, 378–391. https://doi.org/10.1016/j.apenergy.2016.12.012

Brykała, D., & Podgórski, Z. (2020). Evolution of landscapes influenced by watermills, based on examples from Northern Poland. Landscape and Urban Planning, 198(October 2019), 87–100. https://doi.org/10.1016/j.landurbplan.2020.103798

Denny, M. (2004). The efficiency of overshot and undershot waterwheels. European Journal of Physics, 25(2), 193–202. https://doi.org/10.1088/0143-0807/25/2/006

Dewatama, Fauziah, M., Safitri, H., & Adhisuwignjo, S. (2020). Design and implementation : Portable Floating Design and implementation : Portable Floating Pico-Hydro. https://doi.org/10.1088/1757-899X/732/1/012049

Fajri, M. A., Elektro, T., & Sriwijaya, U. (2019). Desain Pembangkit Listrik Tenaga Pikohidro Menggunakan Program Arduino Uno Pada Penambahan Variasi Aliran Air . 23–24.

Faria, F. A. M. d., & Jaramillo, P. (2017). The future of power generation in Brazil: An analysis of alternatives to Amazonian hydropower development. Energy for Sustainable Development, 41, 24–35. https://doi.org/10.1016/j.esd.2017.08.001

Franco, W., Ferraresi, C., & Revelli, R. (2019). Functional analysis of piedmont (Italy) ancient water mills aimed at their recovery or reconversion. Machines, 7(2). https://doi.org/10.3390/machines7020032

Ho-Yan, B. (2012). Design of a Low Head Pico Hydro Turbine for Rural Electrification in Cameroon. 1–175. https://atrium.lib.uoguelph.ca/xmlui/handle/10214/3552

Irwan, L. K. W., Atus, B., Josefine, E. L., & Herby, C. P. T. (2019). Performance of undershot waterwheel curved blade of the laboratory scale. Materials Science Forum, 967 MSF, 250–255. https://doi.org/10.4028/www.scientific.net/MSF.967.250

Jamlay, K., Sule, L., & Hasan, D. (2016). Analisis Perilaku Aliran Terhadap Kinerja Roda Air Arus Bawah Untuk Pembangkit Listrik Skala Pikohidro. Dinamika Teknik Mesin, 6(1). https://doi.org/10.29303/d.v6i1.25

Junaidi, A., & Hendri, A. (2014). Model Fisik Kincir Air Sebagai Pembangkit Listrik. 1(2).

Kholiq, I. (2015). Pemanfaatan Energi Alternatif sebagai Energi Terbarukan untuk Mendukung Subtitusi BBM. In Jurnal IPTEK (Vol. 19, Issue No 2).

Kougias, I., Aggidis, G., Avellan, F., Deniz, S., Lundin, U., Moro, A., Muntean, S., Novara, D., Pérez-Díaz, J. I., Quaranta, E., Schild, P., & Theodossiou, N. (2019). Analysis of emerging technologies in the hydropower sector. Renewable and Sustainable Energy Reviews, 113(June), 109257. https://doi.org/10.1016/j.rser.2019.109257

Krajačić, G., Vujanović, M., Duić, N., Kılkış, Ş., Rosen, M. A., & Ahmad Al-Nimr, M. (2018). Integrated approach for sustainable development of energy, water, and environment systems. Energy Conversion and Management, 159 (3), 398–412. https://doi.org/10.1016/j.enconman.2017.12.016

Lindawati, Jumarang, M. I., & Kushadiwijayanto, A. A. (2018). Karakteristik perambatan gelombang pasang surut di Estuari Kapuas Kecil. Jurnal Laut Katulistiwa, 1(3), 61–66. https://jurnal.untan.ac.id/index.php/lk/article/view/29859

Manzano-Agugliaro, F., Taher, M., Zapata-Sierra, A., Juaidi, A., & Montoya, F. G. (2017). An overview of research and energy evolution for small hydropower in Europe. Renewable and Sustainable Energy Reviews, 75(May 2015), 476–489. https://doi.org/10.1016/j.rser.2016.11.013

Masud, I. A., & Suwa, Y. (2018). Effect of Blade Inclination Angle on the Efficiency of Hydrokinetic Turbine in an Undershoot Zero Head System. 6(6). https://doi.org/10.18178/ijmmm.2018.6.6.413

McManamay, R. A., Parish, E. S., DeRolph, C. R., Witt, A. M., Graf, W. L., & Burtner, A. (2020). Evidence-based indicator approach to guide preliminary environmental impact assessments of hydropower development. Journal of Environmental Management, 265(March), 110489. https://doi.org/10.1016/j.jenvman.2020.110489

Ming, B., Liu, P., Cheng, L., Zhou, Y., & Wang, X. (2018). Optimal daily generation scheduling of large hydro–photovoltaic hybrid power plants. Energy Conversion and Management, 171(April), 528–540. https://doi.org/10.1016/j.enconman.2018.06.001

Moe, K. P., Myat, E. E., Khaing, C. C., & NWE, Z. M. (2019). Design of 10 kW Water Wheel for Micro-Hydro Power. International Journal of Scientific Engineering and Technology Research, 08, 344–349.

Moshfegh, B. (2011). World Renewable Energy Congress – Sweden Editor. World Renewable Energy Congress -Sweden, undefined-undefined.

Müller, G., & Kauppert, K. (2004). Performance characteristics of water wheels. Journal of Hydraulic Research, 42(5), 451–460. https://doi.org/10.1080/00221686.2004.9641215

Nishi, Y., Hatano, K., & Inagaki, T. (2017). Study on performance and flow field of an undershot cross-flow water turbine comprising different number of blades. Journal of Thermal Science, 26(5), 413–420. https://doi.org/10.1007/s11630-017-0956-1

Nishi, Y., Hatano, K., Okazaki, T., Yahagi, Y., & Inagaki, T. (2020). Improvement of performance of undershot cross-flow water turbines based on shock loss reduction. International Journal of Fluid Machinery and Systems, 13(1), 30–41. https://doi.org/10.5293/IJFMS.2019.13.1.030

Nishi, Y., Inagaki, T., Li, Y., & Hatano, K. (2015). Study on an Undershot Cross-Flow Water Turbine with Straight Blades. International Journal of Rotating Machinery, 2015. https://doi.org/10.1155/2015/817926

Nishi, Y., Inagaki, T., Li, Y., Omiya, R., & Fukutomi, J. (2014). Study on an undershot cross-flow water turbine. Journal of Thermal Science, 23(3), 239–245. https://doi.org/10.1007/s11630-014-0701-y

Nishi, Y., Yahagi, Y., Okazaki, T., & Inagaki, T. (2020). Effect of flow rate on performance and flow field of an undershot cross-flow water turbine. Renewable Energy, 149, 409–423. https://doi.org/10.1016/j.renene.2019.12.023

Norhadi, A., Marzuki, A., Wicaksono, L., & Yacob, R. A. (2015). Studi Debit Aliran Pada Sungai Antasan Kelurahan Sungai Andai Banjarmasin Utara. Jurnal Poros Teknik, 7(1).

Pérez-Sánchez, M., Sánchez-Romero, F. J., Ramos, H. M., & López-Jiménez, P. A. (2017). Energy recovery in existing water networks: Towards greater sustainability. Water (Switzerland), 9(2), 1–20. https://doi.org/10.3390/w9020097

Permanasari, A. A., Sukarni, Puspitasari, P., Utama, S. B., & Yaqin, F. A. (2019). Experimental Investigation and Optimization of Floating Blade Water Wheel Turbine Performance Using Taguchi Method and Analysis of Variance (ANOVA). IOP Conference Series: Materials Science and Engineering, 515(1). https://doi.org/10.1088/1757-899X/515/1/012086

Pranoto, B., Aini, S. N., Soekarno, H., Zukhrufiyati, A., Rasyid, H. Al, & Lestari, S. (2018). ( Studi Kasus Di Wilayah Sungai Serayu Opak ) The Potential Of Microhydro In Irrigation Area ( Case Study In Serayu Opak River Basin ). 77–86.

Punys, P., Kasiulis, E., Kvaraciejus, A., Dumbrauskas, A., Vyčienė, G., & Šilinis, L. (2017). Impacts of the EU and national environmental legislation on tapping hydropower resources in Lithuania – A lowland country. Renewable and Sustainable Energy Reviews, 80(March), 495–504. https://doi.org/10.1016/j.rser.2017.05.196

Punys, P., Kvaraciejus, A., Dumbrauskas, A., Šilinis, L., & Popa, B. (2019). An assessment of micro-hydropower potential at historic watermill, weir, and non-powered dam sites in selected EU countries. Renewable Energy, 133, 1108–1123. https://doi.org/10.1016/j.renene.2018.10.086

Quaranta, E., Katopodis, C., Revelli, R., & Comoglio, C. (2017). Turbulent flow field comparison and related suitability for fish passage of a standard and a simplified low-gradient vertical slot fishway. River Research and Applications, 33(8), 1295–1305. https://doi.org/10.1002/rra.3193

Quaranta, E. (2018). Stream water wheels as renewable energy supply in flowing water: Theoretical considerations, performance assessment and design recommendations. Energy for Sustainable Development, 45, 96–109. https://doi.org/10.1016/j.esd.2018.05.002

Quaranta, E. (2020). Estimation of the permanent weight load of water wheels for civil engineering and hydropower applications and dataset collection. Sustainable Energy Technologies and Assessments, 40(June), 100776. https://doi.org/10.1016/j.seta.2020.100776

Quaranta, E., Bonjean, M., Cuvato, D., Nicolet, C., Dreyer, M., Gaspoz, A., Rey-Mermet, S., Boulicaut, B., Pratalata, L., Pinelli, M., Tomaselli, G., Pinamonti, P., Pichler, R., Turin, P., Turrin, D., Foust, J., Trumbo, B., Ahmann, M., Modersitzki, M., … Bragato, N. (2020). Hydropower case study collection: Innovative low head and ecologically improved turbines, hydropower in existing infrastructures, hydropeaking reduction, digitalization and governing systems. Sustainability (Switzerland), 12(21), 1–79. https://doi.org/10.3390/su12218873

Quaranta, E., & Müller, G. (2018). Sagebien and Zuppinger water wheels for very low head hydropower applications. Journal of Hydraulic Research, 56(4), 526–536. https://doi.org/10.1080/00221686.2017.1397556

Quaranta, E., & Revelli, R. (2017a). CFD simulations to optimize the blade design of water wheels. Drinking Water Engineering and Science, 10(1), 27–32. https://doi.org/10.5194/dwes-10-27-2017

Quaranta, E., & Revelli, R. (2017b). Hydraulic Behavior and Performance of Breastshot Water Wheels for Different Numbers of Blades. Journal of Hydraulic Engineering, 143(1), 04016072. https://doi.org/10.1061/(asce)hy.1943-7900.0001229

Quaranta, E., & Revelli, R. (2018). Gravity water wheels as a micro hydropower energy source: A review based on historic data, design methods, efficiencies and modern optimizations. Renewable and Sustainable Energy Reviews, 97(November 2017), 414–427. https://doi.org/10.1016/j.rser.2018.08.033

Quaranta, E., & Wolter, C. (2021). Sustainability assessment of hydropower water wheels with downstream migrating fish and blade strike modelling. Sustainable Energy Technologies and Assessments, 43(November 2020), 100943. https://doi.org/10.1016/j.seta.2020.100943

Setyawan, E. Y., Djiwo, S., Praswanto, D. H., Suwandono, P., Siagian, P., & Malang, U. W. (2019). Design of Low Flow Undershot Type Water Turbine. 2(October), 50–55.

Siswantara, A. I., Budiarso, Prakoso, A. P., Gunadi, G. G. R., Warjito, & Adanta, D. (2018). Assessment of turbulence model for cross-flow pico hydro turbine numerical simulation. CFD Letters, 10(2), 38–48.

Sritram, P., & Suntivarakorn, R. (2017). Comparative Study of Small Hydropower Turbine Efficiency at Low Head Water. Energy Procedia, 138, 646–650. https://doi.org/10.1016/j.egypro.2017.10.181

Suhartono, Fatmawati, S., & Rudianto, R. (2017). Engineering of Floating Power Plant for River Flow Type Undershot 2 Waterwheels With 9 Fixed Blade and Butterfly Blade on Picohydro Scale. 8(1), 45–52.

Sule, L., Mochtar, A. A., & Sutresman, O. (2020). Performance of undershot water wheel with bowl-shaped blades model. International Journal of Technology, 11(2), 278–287. https://doi.org/10.14716/ijtech.v11i2.2465

Suparman. (2017). Desain Pembangkit Listrik Tenaga Piko Hidro. Eeccis, 11(2), 82–88.

Warjito, Adanta, D., Budiarso, & Prakoso, A. P. (2018a). The effect of bucket number on breastshot waterwheel performance. IOP Conference Series: Earth and Environmental Science, 105(1). https://doi.org/10.1088/1755-1315/105/1/012031

Yah, N. F., Idris, M. S., & Oumer, A. N. (2016). Numerical Investigation on Effect of Immersed Blade Depth on the Performance of Undershot Water Turbines. MATEC Web of Conferences, 74, 5–9. https://doi.org/10.1051/matecconf/20167400035

Yahagi, Y., Nishi, Y., OkagiI, T., & Inagaki, T. (2016). Performance analysis of an undershot cross-flow water turbine based on the flow near the runner. Transactions of the JSME (in Japanese), 82(841), 16-00271-16–00271. https://doi.org/10.1299/transjsme.16-00271

Zhou, Y., Chang, L. C., Uen, T. S., Guo, S., Xu, C. Y., & Chang, F. J. (2019). Prospect for small-hydropower installation settled upon optimal water allocation: An action to stimulate synergies of water-food-energy nexus. Applied Energy, 238(October 2018), 668–682. https://doi.org/10.1016/j.apenergy.2019.01.069




DOI: http://dx.doi.org/10.24042/jipfalbiruni.v11i1.10060

Refbacks

  • There are currently no refbacks.


Creative Commons License

Jurnal ilmiah pendidikan fisika Al-Biruni is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.