GARCH Model IBM Stock Forecasting of Price Volatility

Balqis Dwian Fitri Zamzami , Ericson Chandra Sihombing , Veni Zahara Kartika , Christian Arvianus Nathanael Biran , Luluk Muthoharoh , Mika Alvionita Sitinjak

Abstract


Risk and volatility are two related factors in research regarding capital markets. Many factors influence the movement of shares and indices. Volatility is common and affects risk assessment. Stock price volatility is an important aspect of understanding market behavior, with high volatility reflecting rapid and unstable price fluctuations. This research investigates the GARCH model in assessing volatility on the IBM Stock Exchange. The method employed was the symmetric GARCH model. It focuses on univariate analysis using the GARCH econometric model. The GARCH model allows modeling stock price variance over time based on the assumption that the variance was influenced by past stock price variance. The stages of this research were (1) data collection, (2) data pre-processing, and (3) forecasting model implementation. The best model obtained was ARMA(4,2)-GARCH(5,6) with an AIC value of 4.1017. A lower AIC value indicates that the model explains the data better or more optimally. A diagnostic test found that the model was adequate because the residual distribution followed a straight line, which means it was normally distributed.

Keywords


ARMA; GARCH; IBM; Stock

Full Text:

PDF

References


S. Wisudani and M. P. Priyadi, “Analisis Pengaruh Faktor Internal dan Eksternal Terhadap Harga Saham Pada Perusahaan Manufaktor yang Terdaftar di Bursa Efek Indonesia,” J. Ilmu dan Ris. Akunt., vol. 10, no. 1, pp. 1–22, 2021, [Online]. Available: http://jurnalmahasiswa.stiesia.ac.id/index.php/jira/article/view/3721

Andrew Patar, Darminto, and Muhammad Saifi, “Pergerakan Harga Saham ( Studi Pada Saham-Saham Indeks LQ45 Periode 2009 – 2013 ,” J. Adm. Bisnis, vol. 11, no. 1, pp. 1–9, 2014, [Online]. Available: https://www.neliti.com/id/publications/82598/faktor-internal-dan-eksternal-yang-mempengaruhi-pergerakan-harga-saham-studi-pad

E. R. Yudistira and I. M. P. Adiputra, “Pengaruh Faktor Internal dan Eksternal Terhadap Harga Saham,” J. Ilm. Akunt. dan Humanika, vol. 10, no. 2, p. 176, 2020, doi: 10.23887/jiah.v10i2.25862.

R. Bhowmik and S. Wang, “Stock market volatility and return analysis: A systematic literature review,” Entropy, vol. 22, no. 5, pp. 1–18, 2020, doi: 10.3390/E22050522.

S. Li, Y. Wang, Z. Zhang, and Y. Zhu, “Research on the Factors Affecting Stock Price Volatility,” Proc. 2022 7th Int. Conf. Financ. Innov. Econ. Dev. (ICFIED 2022), vol. 648, no. Icfied, pp. 2884–2889, 2022, doi: 10.2991/aebmr.k.220307.469.

Z. Mai, “A Literature Study of the Stock Market Volatility,” BCP Bus. Manag., vol. 44, pp. 150–155, 2023, doi: 10.54691/bcpbm.v44i.4806.

Agung Putra Raneo and Fida Muthiab, “Penerapan Model GARCH Dalam Peramalan Volatilitas di Bursa Efek Indonesia,” J. Manaj. dan Bisnis Sriwij., vol. 16, no. 2018, pp. 194–202, 2018.

I. Akin and M. Akin, “Behavioral finance impacts on US stock market volatility: An analysis of market anomalies,” Behav. Public Policy, pp. 1–25, 2024, doi: 10.1017/bpp.2024.13.

G. S. Biu and P. K. Kusuma, “Stock Market Volatility Analysis During the Global Financial Crisis : Literature Review,” vol. 6, no. 4, pp. 2510–2520, 2023.

Sumiyati, B. D. A. Arisandi, and P. R. Wilujeng, “Metode Arch/Garch Untuk Memprediksi Hubungan Economic Uncertainty (Covid 19) Dan Volatilitas Saham Sumiyati Boy Dian Anugra Arisandi Panggio Restu Wilujeng,” J. Bisnis Dan Akunt., vol. 24, no. 1, pp. 117–130, 2022, [Online]. Available: http://jurnaltsm.id/index.php/JBA

M. I. Rizki, T. A. Taqiyyuddin, P. F. Rahmah, and A. E. Hasana, “Penerapan Model ARCH/GARCH untuk Memprediksi Harga Saham Perusahaan Tokai Carbon,” J. Sains Mat. dan Stat., vol. 7, no. 2, 2021, doi: 10.24014/jsms.v7i2.13138.

D. M. AL-Najjar, “Modelling and Estimation of Volatility Using ARCH/GARCH Models in Jordan’s Stock Market,” Asian J. Financ. Account., vol. 8, no. 1, p. 152, 2016, doi: 10.5296/ajfa.v8i1.9129.

E. Virginia, J. Ginting, and F. A. M. Elfaki, “Application of garch model to forecast data and volatility of share price of energy (Study on adaro energy Tbk, LQ45),” Int. J. Energy Econ. Policy, vol. 8, no. 3, pp. 131–140, 2018.

S. Chand, S. Kamal, and I. Ali, “Modeling and volatility analysis of share prices using ARCH and GARCH models,” World Appl. Sci. J., vol. 19, no. 1, pp. 77–82, 2012, doi: 10.5829/idosi.wasj.2012.19.01.793.

C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, “A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data,” Front. Energy Res., vol. 9, no. March, pp. 1–17, 2021, doi: 10.3389/fenrg.2021.652801.

N. Manakitsa, G. S. Maraslidis, L. Moysis, and G. F. Fragulis, “A Review of Machine Learning and Deep Learning for Object Detection, Semantic Segmentation, and Human Action Recognition in Machine and Robotic Vision,” Technologies, vol. 12, no. 2, 2024, doi: 10.3390/technologies12020015.

S. A. Alasadi and W. S. Bhaya, “Review of data preprocessing techniques in data mining,” J. Eng. Appl. Sci., vol. 12, no. 16, pp. 4102–4107, 2017, doi: 10.3923/jeasci.2017.4102.4107.

F. Mubarok and E. Sutrieni, “GARCH Model For Forecasting Stock Return Volatility In The Infrastructure , Utilities And Transportation Sectors,” Eksis J. Ris. Ekon. dan Bisnis, vol. 15, no. 2, pp. 87–100, 2021, doi: 10.26533/eksis.v15i2.646.

G. Velmurugan, E. Palaniswamy, M. Sambathkumar, R. Vijayakumar, and T. M. Sakthimuruga, “Conveyor Belt Troubles (Bulk Material Handling),” Int. J. Emerg. Eng. Res. Technol., vol. 2, no. 3, pp. 21–30, 2014.

R. Chaudhary, P. Bakhshi, and H. Gupta, “Volatility in International Stock Markets: An Empirical Study during COVID-19,” J. Risk Financ. Manag., vol. 13, no. 9, 2020, doi: 10.3390/jrfm13090208.

K. Rifda, “Analysis of Google Stock Prices from 2020 to 2023 using the GARCH Method,” vol. 3, no. 2, pp. 79–85, 2023, doi: 10.24042/ijecs.v3i2.20899.

B. Y. Almansour, M. M. Alshater, and A. Y. Almansour, “Performance of ARCH and GARCH models in forecasting cryptocurrency market volatility,” Ind. Eng. Manag. Syst., vol. 20, no. 2, pp. 130–139, 2021, doi: 10.7232/iems.2021.20.2.130.

J. Caiado and F. Lúcio, “Stock market forecasting accuracy of asymmetric GARCH models during the COVID-19 pandemic,” North Am. J. Econ. Financ., vol. 68, no. February, p. 101971, 2023, doi: 10.1016/j.najef.2023.101971.




DOI: http://dx.doi.org/10.24042/ijecs.v4i1.22866

Refbacks

  • There are currently no refbacks.


Creative Commons License

International Journal of Electronics and Communications System (IJECS) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.