Analysis of Google Stock Prices from 2020 to 2023 using the GARCH Method

Berliyana Kesuma Hati , M Farhan Athaulloh , Husni Na’fa Mubarok , Sergii Sharov , Berliyana Kesuma Hati , Luluk Muthoharoh , Mika Alvionita

Abstract


This research focuses on Google's share price movements, considering their significant impact on the financial market, using Google's share price data from 2020 to 2023. The aim is to analyze error variance and forecast and provide valuable information to stockbrokers and investors. The ARMA model has shortcomings in dealing with volatility, so the GARCH model is used to overcome it. Research methods include financial data analysis, preprocessing, and modeling with GARCH. The rolling forecast method describes changes in price patterns over time. Evaluation using MAPE validates the prediction accuracy of the ARIMA model. The best model chosen with the most negligible AIC value criteria was the ARIMA(3,0,2)GARCH(1,1) model. The forecasting results show accurate stock price predictions with an average MAPE value of 20.7%. This research provides an essential basis for brokers and investors in making investment decisions based on a deep understanding of the dynamics of Google's share price movements in the above time frame.

Keywords


GARCH; Stocks; Stock Prices; Time Series

Full Text:

PDF

References


Ratih Kusumawardhani, Risal Rinofah, and Dandi Rukmana, “Google trend and stock market: Does it matter?,” J. Innov. Bus. Econ., vol. 5, no. 02, pp. 85–92, 2022, doi: 10.22219/jibe.v5i02.18678.

L. Bijl, K. Glenn, and M. Peter, “Google searches and stock returns,” Int. Rev. Financ. Anal., vol. 45, no. 1, pp. 150–156, 2016, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S105752191630045X

R. Robiyanto, M. A. Santoso, A. D. R. Atahau, and H. Harijono, “The Indonesia stock exchange and its dynamics: An analysis of the effect of macroeconomic variables,” Montenegrin J. Econ., vol. 15, no. 4, pp. 59–73, 2019, doi: 10.14254/1800-5845/2019.15-4.5.

Z. A. Rafsanjani, D. Nurtiyasari, and A. Syahputra, “The Dynamics of Stock Price Change Motion Effected by Covid-19 Pandemic and the Stock Price Prediction Using Multi-layered Neural Network,” Int. J. Comput. Sci. Appl. Math., vol. 7, no. 1, p. 8, 2021, doi: 10.12962/j24775401.v7i1.7023.

J. Kane, “Google stock forecast: 2023 and Beyond,” Lite Finance, p. 1, 2021.

W. K. Pertiwi and R. Wahyudi, “17 Tahun Lalu, Google Perdana Lepas Saham 85 Dollar Per Lembar Artikel ini telah tayang di Kompas.com dengan judul ‘17 Tahun Lalu, Google Perdana Lepas Saham 85 Dollar Per Lembar’, Klik untuk baca: https://tekno.kompas.com/read/2021/08/19/16270007/17-tahu,” Kompas, Jakarta, 2021. [Online]. Available: https://tekno.kompas.com/read/2021/08/19/16270007/17-tahun-lalu-google-perdana-lepas-saham-85-dollar-per-lembar

E. Ulya, Fika Nurul Djumena, “Sah, Google dan Temasek Kini Jadi Pemegang Saham Baru Tokopedia,” Kompas, Jakarta, 2020. [Online]. Available: https://money.kompas.com/read/2020/11/17/060300226/sah-google-dan-temasek-kini-jadi-pemegang-saham-baru-tokopedia

F. Aslam, M. A. Yaqub, and B. Bashir, “International Journal of Management Research and Emerging Sciences Predicting Stock Market Direction using Machine Learning Models,” vol. 83, no. 1, p. 2019, 2019, [Online]. Available: http://ijmres.pk/

S. Maddodi and K. G. N. Kumar, “Stock Market Forecasting: A Review of Literature,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. Vol 5, No, p. 11, 2021, [Online]. Available: https://ojs.stmikpringsewu.ac.id/index.php/ijiscs/article/download/1064/pdf

S. S. Ishak et al., “Indonesian Consumer Price Index Forecasting Using Autoregressive Integrated Moving Average,” Int. J. Electron. Commun. Syst., vol. 3, no. 1, p. 33, 2023, doi: 10.24042/ijecs.v3i1.18252.

S. Khandelwal and D. Mohanty, “Stock Price Prediction Using Arima Model,” Int. J. Mark. Hum. Resour. Res., vol. 2, no. 2, pp. 2746–4040, 2021.

Z. Haider Khan, T. Sharmin Alin, and A. Hussain, “Price Prediction of Share Market Using Artificial Neural Network ‘ANN,’” Int. J. Comput. Appl., vol. 22, no. 2, pp. 42–47, 2011, doi: 10.5120/2552-3497.

P. Meesad and R. I. Rasel, “Predicting stock market price using support vector regression,” 2013 Int. Conf. Informatics, Electron. Vision, ICIEV 2013, no. May, 2013, doi: 10.1109/ICIEV.2013.6572570.

G. Sonkavde, D. S. Dharrao, A. M. Bongale, S. T. Deokate, D. Doreswamy, and S. K. Bhat, “Forecasting Stock Market Prices Using Machine Learning and Deep Learning Models: A Systematic Review, Performance Analysis and Discussion of Implications,” Int. J. Financ. Stud., vol. 11, no. 3, 2023, doi: 10.3390/ijfs11030094.

L. N. Faiza and D. Agustina, “Aplikasi Machine Learning dalam Prediksi Harga Saham Jakarta Islamic Index ( JII ) Menggunakan Metode Support Vector Regression,” vol. 8, no. 3, pp. 79–88, 2023.

V. V. Setia, “Analisis Penilaian Harga Saham Menggunakan Metode Dividend Discount Model (DDM) sebagai Dasar Pengambilan Keputusan Investasi (Studi pada Perusahaan yang termasuk dalam Indeks LQ-45 di Bursa Efek Indonesia Tahun 2013-2015).,” Apl. Adm., vol. 20, no. 1, pp. 26–38, 2018, doi: 10.30649/aamama.v20i1.90.

I. S. Mubarokah, A. Fitrianto, and F. M. Affendi, “Perbandingan Model Garch Simetris dan Asimetris Pada Data Kurs Harian,” Indones. J. Stat. Its Appl., vol. 4, no. 4, pp. 627–637, 2020, doi: 10.29244/ijsa.v4i4.709.

A. H. A. Zili, D. Hendri, and S. A. A. Kharis, “Peramalan Harga Saham dengan Model Hybrid Arima-Garch dan Metode Walk Forward,” J. Stat. dan Apl., vol. 6, no. 2, pp. 341–354, 2022, doi: 10.21009/jsa.06218.

V. O. Nur Laily, B. Warsito, and D. A. I Maruddani, “Comparison of ARCH / GARCH model and Elman Recurrent Neural Network on data return of closing price stock,” J. Phys. Conf. Ser., vol. 1025, no. 1, 2018, doi: 10.1088/1742-6596/1025/1/012103.

A. J. M. Tarigan, M. Mardiningsih, and S. Suwilo, “The search for alternative algorithms of the iteration method on a system of linear equation,” Sinkron, vol. 7, no. 4, pp. 2124–2424, 2022, doi: 10.33395/sinkron.v7i4.11817.

Bernadhita Herindri Samodera Utami, D. Herinanto, and M. Gumanti, “Aplikasi Metode Maximum Likelihood Estimation pada Data Binomial Interval-Tersensor,” Transform. J. Pendidik. Mat. dan Mat., vol. 6, no. 1, pp. 75–85, 2022, doi: 10.36526/tr.v6i1.1934.

K. R. Katianda, R. Goejantoro, and A. M. Ade Satriya, “Estimasi Parameter Model Regresi Linier dengan Pendekatan Bayes (Studi Kasus: Kemiskinan di Provinsi Kalimantan Timur pada Tahun 2017) Estimation Parameter of Linear Regression Model with Bayes Approach (Case Study: Poverty of East Kalimantan Province in ,” J. EKSPONENSIAL, vol. 11, no. 2, pp. 127–132, 2020.

F. Yanuar, R. Febriyuni, and I. R. HG, “Bayesian Generalized Self Method to Estimate Scale Parameter of Invers Rayleigh Distribution,” CAUCHY J. Mat. Murni dan Apl., vol. 6, no. 4, pp. 270–278, 2021, doi: 10.18860/ca.v6i4.11482.

M. B. S. Junianto, “Fuzzy Inference System Mamdani dan the Mean Absolute Percentage Error (MAPE) untuk Prediksi Permintaan Dompet Pulsa pada XL Axiata Depok,” J. Inform. Univ. Pamulang, vol. 2, no. 2, p. 97, 2017, doi: 10.32493/informatika.v2i2.1511.

I Putu Susila Handika and I Kadek Susila Satwika, “Enhancing Sales Forecasting Accuracy Through Optimized Holt-Winters Exponential Smoothing with Modified Improved Particle Swarm Optimization,” J. Nas. Pendidik. Tek. Inform., vol. 12, no. 2, pp. 203–212, 2023, doi: 10.23887/janapati.v12i2.65462.

D. Alita, A. D. Putra, and D. Darwis, “Analysis of Classic Assumption Test and Multiple Linear Regression Coefficient Test for Employee Structural Office Recommendation,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 15, no. 3, p. 295, 2021, doi: 10.22146/ijccs.65586.

P. Bagus, P. Putra, C. Wiedyaningsih, and E. Yuniarti, “Forecasting Drug Demand Using The Single Moving Average At Prof . dr . I . G . N . G . Ngoerah Hospital,” vol. 19, no. 3, pp. 394–402, 2023.

A. A. Adebiyi, A. O. Adewumi, and C. K. Ayo, “Stock Price Prediction using the ARIMA Model,” Proc. - UKSim-AMSS 16th Int. Conf. Comput. Model. Simulation, UKSim 2014, no. June, pp. 106–112, 2014, doi: 10.1109/UKSim.2014.67.

P. C. Chang, Y. W. Wang, and C. H. Liu, “The Development of a Weighted Evolving Fuzzy Neural Network for PCB sales forecasting,” Expert Syst. Appl., vol. 32, no. 1, pp. 86–96, 2007, doi: 10.1016/j.eswa.2005.11.021.




DOI: http://dx.doi.org/10.24042/ijecs.v3i2.20899

Refbacks

  • There are currently no refbacks.


Creative Commons License

International Journal of Electronics and Communications System (IJECS) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.