Comparison Study of Convolutional Neural Network Architecture in Aglaonema Classification
Abstract
Keywords
Full Text:
PDFReferences
L. Alzubaidi et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, vol. 8, no. 1. Springer International Publishing, 2021. doi: 10.1186/s40537-021-00444-8.
A. Anton, N. F. Nissa, A. Janiati, N. Cahya, and P. Astuti, “Application of Deep Learning Using Convolutional Neural Network (CNN) Method For Women’s Skin Classification,” Sci. J. Informatics, vol. 8, no. 1, pp. 144–153, 2021, doi: 10.15294/sji.v8i1.26888.
M. I. Mardiyah and T. Purwaningsih, “Developing deep learning architecture for image classification using convolutional neural network (CNN) algorithm in forest and field images,” Sci. Inf. Technol. Lett., vol. 1, no. 2, pp. 83–91, 2020, doi: 10.31763/sitech.v1i2.160.
R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional Neural Networks: An Overview and Its Applications in Pattern Recognition,” Smart Innov. Syst. Technol., vol. 195, no. 9, pp. 61–629, 2021, doi: 10.1007/978-981-15-7078-0_3.
A. Biswas and M. S. Islam, “An Efficient CNN Model for Automated Digital Handwritten Digit Classification,” J. Inf. Syst. Eng. Bus. Intell., vol. 7, no. 1, p. 42, 2021, doi: 10.20473/jisebi.7.1.42-55.
O. I. Abiodun et al., “Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition,” IEEE Access, vol. 7, no. February 2017, pp. 158820–158846, 2019, doi: 10.1109/ACCESS.2019.2945545.
D. Seo, J. Ahn, and H. Nam, “Comparison of CNN Architectures using RP Algorithm for Burst Signal Detection,” Int. Conf. ICT Converg., vol. 2020-Octob, pp. 809–812, 2020, doi: 10.1109/ICTC49870.2020.9289320.
“No Title,” 2019.
“Buku Budidaya Tanaman Hias Daun Athurium dan Aglonema.pdf.”
C. Of et al., “Karakterisasi tanaman aglaonema di dataran tinggi rejang lebong (,” vol. 17, no. 2, pp. 141–151, 2019.
W. S. Eka Putra, “Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101,” J. Tek. ITS, vol. 5, no. 1, 2016, doi: 10.12962/j23373539.v5i1.15696.
I. A. Sabilla, “Arsitektur Convolutional Neural Network (Cnn) Untuk Klasifikasi Jenis Dan Kesegaran Buah Pada Neraca Buah,” Tesis, no. 201510370311144, pp. 1–119, 2020.
S. Muhammad and A. T. Wibowo, “Klasifikasi Tanaman Aglaonema Berdasarkan Citra Daun Menggunakan Metode Convolutional Neural Network (Cnn,” e-Proceeding Eng., vol. 8, no. 5, pp. 10621–10636, 2021.
H.Taufiq, K. Patmi, and S. Ardi, “Classification of Aglaonema Plants Berdasarkan Corak Daun,” Semin. Nas. Inov. Teknol., pp. 223–228, 2019, [Online]. Available: https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/541
A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, A survey of the recent architectures of deep convolutional neural networks, vol. 53, no. 8. Springer Netherlands, 2020. doi: 10.1007/s10462-020-09825-6.
N. Anantrasirichai, S. Hannuna, and N. Canagarajah, “Automatic Leaf Extraction from Outdoor Images,” no. September, 2017, [Online]. Available: http://arxiv.org/abs/1709.06437
H. Wu, Y. Liu, X. Xu, and Y. Gao, “Object Detection Based on the GrabCut Method for Automatic Mask Generation,” Micromachines, vol. 13, no. 12, 2022, doi: 10.3390/mi13122095.
L. Zhang and M. Chang, “An image inpainting method for object removal based on difference degree constraint,” Multimed. Tools Appl., vol. 80, no. 3, pp. 4607–4626, 2021, doi: 10.1007/s11042-020-09835-0.
S. Kulkarni, “Removal of Unwanted Objects From Images Using Statistics,” ICTACT J. Image Video Process., vol. 9, no. 2, pp. 1887–1893, 2018, doi: 10.21917/ijivp.2018.0268.
V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient Processing of Deep Neural Networks,” Synth. Lect. Comput. Archit., vol. 15, no. 2, pp. 1–341, 2020, doi: 10.2200/s01004ed1v01y202004cac050.
D. Irfansyah, M. Mustikasari, and A. Suroso, “Arsitektur Convolutional Neural Network (CNN) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi,” J. Inform. J. Pengemb. IT, vol. 6, no. 2, pp. 87–92, 2021.
S. Mariyam, A. Osman, and C. Ramadhe, “Weight Changes for Learning Mechanisms in Two-Term Back-Propagation Network,” Artif. Neural Networks - Archit. Appl., 2013, doi: 10.5772/51776.
A. H. Sianturi, “Implementasi Algoritma Convolutional Neural Networks di Microsoft Azure untuk Mendeteksi Jenis Kebutaan Mata yang dialami Penderita Penyakit Diabetes,” Anal. Kesadahan Total dan Alkalinitas pada Air Bersih Sumur Bor dengan Metod. Titrim. di PT Sucofindo Drh. Provinsi Sumatera Utara, pp. 44–48, 2018.
A. Salma, A. Bustamam, and D. Sarwinda, “Diabetic Retinopathy Detection Using GoogleNet Architecture of Convolutional Neural Network Through Fundus Images,” vol. 2021, pp. 1–6, 2021, doi: 10.11594/nstp.2021.0701.
Z. Niswati, R. Hardatin, M. N. Muslimah, and S. N. Hasanah, “Perbandingan Arsitektur ResNet50 dan ResNet101 dalam Klasifikasi Kanker Serviks pada Citra Pap Smear,” Fakt. Exacta, vol. 14, no. 3, p. 160, 2021, doi: 10.30998/faktorexacta.v14i3.10010.
DOI: http://dx.doi.org/10.24042/ijecs.v2i2.13694
Refbacks
- There are currently no refbacks.
International Journal of Electronics and Communications System (IJECS) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.