Comparative Analysis of Multi-Substrate Materials in Microstrip Antenna Models for Broadband Wireless Communications

Budi Herdiana

Abstract


Multi-substrate antenna material is a combination of more than one primary antenna base material where this substrate material can determine the quality of antenna performance. A quantitative empirical approach is carried out to achieve maximum performance by processing the dielectric constant of the substrate to obtain other antenna parameters. This aims to increase the stability of the antenna gain and produce a large bandwidth. The results show that diamond has a bandwidth of 75 MHz with a maximum gain of 4.228 dBi and a VSWR of 18.017. While epoxy FR-4 produces a bandwidth of 57 MHz with a maximum gain of 3.444 dBi and a VSWR of 2.011, the quartz material produces a bandwidth of 80 MHz with a maximum gain of 4.426 dBi and a VSWR of 10.884. The conclusion is that FR-4 epoxy substrate performs better than diamond and quartz. It is hoped that the results of this research will impact the development of a smart antenna system.

Keywords


Antenna microstrip; Broadband; Diamond; Epoxy FR-4; Multi Substrates; Quartz.

Full Text:

PDF

References


M. Sauter, From GSM to LTE an Introduction to Mobile Network and Mobile Broadband. United Kingdom: John Wiley & Sons, Inc., 2011.

T. W. Kim, J. S. Park, and S. O. Park, “A Theoretical Model for Resonant Frequency and Radiation Pattern on Rectangular Microstrip Patch Antenna on Liquid Crystal Substrate,” IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4533–4540, 2018, doi: 10.1109/TAP.2018.2851304.

S. Yadav, P. Patel, and V. K. Yadav, “Design and analysis of printed rectangular Microstrip antenna on Ferrite material,” Proc. IEEE Int. Conf. Soft-Computing Netw. Secur. ICSNS 2015, 2015, doi: 10.1109/ICSNS.2015.7292395.

S. Chattopadhyay, J. Y. Siddiqui, and D. Guha, “Rectangular Microstrip Patch on a Composite Dielectric,” October, vol. 57, no. 10, pp. 3324–3327, 2009, [Online]. Available: http://ieeexplore.ieee.org/document/5196742/

A. Motevasselian and W. G. Whittow, “Miniaturization of a Circular Patch Microstrip Antenna Using an Arc Projection,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 517–520, 2017, doi: 10.1109/LAWP.2016.2586749.

B. Pratiknyo Adi Mahatmanto and C. Apriono, “High Gain 4×4 Microstrip Rectangular Patch Array Antenna for C-Band Satellite Applications,” Proceeding - 1st FORTEI-International Conf. Electr. Eng. FORTEI-ICEE 2020, pp. 125–129, 2020, doi: 10.1109/FORTEI-ICEE50915.2020.9249810.

A. K. Verma and Nasimuddin, “Resonance frequency and bandwidth of rectangular microstrip antenna on thick substrate,” IEEE Microw. Wirel. Components Lett., vol. 12, no. 2, pp. 60–62, 2002, doi: 10.1109/7260.982877.

O. D. Ossa and F. E. López, “Rectangular Patch Antenna Strain Sensor with Plastic Substrate for Curvature Measurements,” IEEE Lat. Am. Trans., vol. 16, no. 5, pp. 1358–1363, 2018, doi: 10.1109/TLA.2018.8408428.

N. Hussain, U. Azimov, M. Jeong, S. Rhee, S. W. Lee, and N. Kim, “A high-gain microstrip patch antenna using multiple dielectric superstrates for WLAN applications,” Appl. Comput. Electromagn. Soc. J., vol. 35, no. 2, pp. 187–193, 2020.

L. Guo, P. K. Tan, and T. H. Chio, “On the Use of Single-Layered Subwavelength Rectangular Patch Elements for Broadband Folded Reflectarrays,” IEEE Antennas Wirel. Propag. Lett., vol. 16, no. c, pp. 424–427, 2017, doi: 10.1109/LAWP.2016.2582201.

D. Sarmah, N. Bhattacharyya, and S. Bhattacharyya, “Study of graded composite (LDPE/TIO2) materials as substrate for microstrip patch antennas in X-band,” IEEE Trans. Dielectr. Electr. Insul., vol. 20, no. 5, pp. 1845–1850, 2013, doi: 10.1109/TDEI.2013.6633716.

M. Morshed, Z. Li, B. C. Olbricht, and H. T. Hattori, “Diamond Substrate High Fluence Nano-Antennas,” 2019 IEEE Photonics Conf. IPC 2019 - Proc., pp. 1–2, 2019, doi: 10.1109/IPCon.2019.8908399.

B. Lyu, Z. Yang, G. Gui, and Y. Feng, “Wireless Powered Communication Networks Assisted by Backscatter Communication,” IEEE Access, vol. 5, no. 8, pp. 7254–7262, 2017, doi: 10.1109/ACCESS.2017.2677521.

E. Fadel et al., “A Survey on Wireless Sensor Networks for Smart Grid,” Comput. Commun., vol. 71, no. C, pp. 22–33, 2015, doi: 10.1016/j.comcom.2015.09.006.

N. Iqbal et al., “Multipath Cluster Fading Statistics and Modeling in Millimeter-Wave Radio Channels,” IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2622–2632, 2019, doi: 10.1109/TAP.2019.2894277.

R. Zhang, S. Wang, X. Lu, W. Duan, and L. Cai, “Two-Dimensional DoA Estimation for Multipath Propagation Characterization Using the Array Response of PN-Sequences,” IEEE Trans. Wirel. Commun., vol. 15, no. 1, pp. 341–356, 2016, doi: 10.1109/TWC.2015.2473156.

Z. K. Djalal and M. S. Mouhamed, “New Diamond Antenna for Ultra Wideband Applications,” vol. 9, no. 4, pp. 387–390, 2012.

M. Li, Y. Yang, F. Iacopi, J. Nulman, and S. Chappel-Ram, “3D-Printed Low-Profile Single-Substrate Multi-Metal Layer Antennas and Array with Bandwidth Enhancement,” IEEE Access, vol. 8, pp. 217370–217379, 2020, doi: 10.1109/ACCESS.2020.3041232.

S. Yoshida and K. Nishikawa, “Experimental Verification of Excavated Structure on Multi-Layered Substrates for Millimeter-Wave Signal Vertical Transition Using Copper Balls,” IEEE Access, vol. 8, pp. 2362–2372, 2020, doi: 10.1109/ACCESS.2019.2961624.

W. Stutzman L and G. A. Thiele, Antenna Theory and Design, 3rd Edition. United States: New Jersey: John Wiley and Sons, Inc, 2012.

C. A. Balanis, Antenna Theory: Analysis and Design, 3rd Edition. 2005. [Online]. Available: http://www.amazon.com/Antenna-Theory-Analysis-Design-Edition/dp/047166782X

C. Science and R. H. Thaher, “Antenna for Wireless Communications,” pp. 8–9, 2016.

L. Zhou, M. Tang, Z. Gao, J. Mao, H. Yue, and Y. Tang, “Design and Fabrication of Patch Antenna Array on Quartz Glass Substrate at 146 GHz,” 2020 Int. Conf. Microw. Millim. Wave Technol. ICMMT 2020 - Proc., pp. 2020–2022, 2020, doi: 10.1109/ICMMT49418.2020.9386575.

P. A. H. Vardhini and N. Koteswaramma, “Patch antenna design with FR-4 Epoxy substrate for multiband wireless communications using CST Microwave studio,” Int. Conf. Electr. Electron. Optim. Tech. ICEEOT 2016, pp. 1811–1815, 2016, doi: 10.1109/ICEEOT.2016.7755000.

M. Elsherbini, I. M. Ibrahim, and A. M. Abaza, “Towards a Simplified UWB Prototype Antenna for Wireless Communications Uses,” Int. J. Electron. Eng. Comput. Sci., vol. 6, no. 1, pp. 1–6, 2021.




DOI: http://dx.doi.org/10.24042/ijecs.v2i1.11979

Refbacks

  • There are currently no refbacks.


Creative Commons License

International Journal of Electronics and Communications System (IJECS) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.