Development and Implementation of a Four-Tier Close-Ended Test to Analyze Students' Misconceptions of Optical Instruments

Itsna Rona Wahyu Astuti, Achmad Samsudin, Ida Kaniawati, Endi Suhendi, Bayram Çoştu

Abstract


The research aims to develop a four-tier test for optical instrument materials. The method used in this study is a 4D design that includes defining, designing, developing, and disseminating. The instrument used consisted of fifteen items in the form of a four-tier closed-ended test. The research participants were 60 female and 15 male students from West Java in grade 11 high school who were randomly selected. The analysis is divided into four parts. The first analysis is a CVR and multi-rater Rasch measurement of the original validation results. The second analysis involves calculating the percentage of students' scores based on their conception scores. The third is a Rasch Model analysis of the instrument's validity and reliability. The Rasch Model is used in the fourth analysis to examine conceptions and misconceptions. Following the analysis, all items met the CVR value criteria. I2, I7, I9, I10, I12, I15, and I3 have logit values less than zero and are corrected based on expert feedback. The second analysis reveals that students continue to have misconceptions about each item. According to the third analysis, all items were valid and reliable, with a Cronbach Alpha value 0.78 in either category. According to the fourth analysis, conception is inversely related to misconception. The fewer misconceptions, the better the students' conceptions, and vice versa. However, confidence can also be a dissonant influence. Students who experience misconceptions need to be given appropriate treatment to reduce misconceptions about optical instrument materials. Hopefully, the four-tier closed-ended test that has been developed can be used and developed into a better five-level test to investigate the causes of each student's misconceptions.

Keywords


Four-tier test; Misconception; Optical instruments

Full Text:

PDF

References


Afif, N. F., Nugraha, M. G., & Samsudin, A. (2017). Developing energy and momentum conceptual survey (EMCS) with four-tier diagnostic test items. AIP Conference Proceedings, 1848. https://doi.org/10.1063/1.4983966

Amalia, S. A., Suhendi, E., Kaniawati, I., Samsudin, A., Fratiwi, N. J., Hidayat, S. R., Zulfikar, A., Sholihat, F. N., Jubaedah, D. S., Setyadin, A. H., Purwanto, M. G., Muhaimin, M. H., Bhakti, S. S., & Afif, N. F. (2019). Diagnosis of student’s misconception on momentum and impulse trough inquiry learning with computer simulation (ILCS). Journal of Physics: Conference Series, 1204(1). https://doi.org/10.1088/1742-6596/1204/1/012073

Aminudin, A. H., Adimayuda, R., Kaniawati, I., Suhendi, E., Samsudin, A., & Coştu, B. (2019). Rasch analysis of Multitier Open-ended Light-Wave Instrument (MOLWI): Developing and assessing second-years sundanese-scholars alternative conceptions. Journal for the Education of Gifted Young Scientists, 7(3), 557–579. https://doi.org/10.17478/jegys.574524

Anggrayni, S., & Ermawati, F. U. (2019). The validity of Four-Tier’s misconception diagnostic test for work and energy concepts. Journal of Physics: Conference Series, 1171(1). https://doi.org/10.1088/1742-6596/1171/1/012037

Bautista, N. U., & Boone, W. J. (2015). Exploring the impact of TeachMETM Lab Virtual Classroom Teaching Simulation on early childhood education majors’ self-efficacy beliefs. Journal of Science Teacher Education, 26(3), 237–262. https://doi.org/10.1007/s10972-014-9418-8

Bond, T. G., & Fox, C. M. (2013). Applying the Rasch model fundamental measurement in the human science. In Applying the Rasch Model. Routledge. https://doi.org/10.4324/9781410614575

Boone, W. J., Yale, M. S., & Staver, J. R. (2014). Rasch analysis in the human sciences. In Rasch Analysis in the Human Sciences.

Brookhart, S. M., Walsh, J. M., & Zientarski, W. A. (2006). The dynamics of motivation and effort for classroom assessments in middle school science and social studies. Applied Measurement in Education, 19(2), 151–184. https://doi.org/10.1207/s15324818ame1902_5

Caleon, I., & Subramaniam, R. (2010). Development and application of a three-tier diagnostic test to assess secondary students’ understanding of waves. International Journal of Science Education, 32(7), 939–961. https://doi.org/10.1080/09500690902890130

Coetzee, A., & Imenda, S. N. (2012). Alternative conceptions held by first year physics students at a South African university of technology concerning interference and diffraction of waves. Research in Higher Education Journal, 16(July), 13. https://www.aabri.com/manuscripts/121097.pdf

Coştu, B. (2008). Learning science through the PDEODE teaching strategy: Helping students make sense of everyday situations. Eurasia Journal of Mathematics, Science and Technology Education, 4(1), 3–9. https://doi.org/10.12973/ejmste/75300

Coştu, B., Ayas, A., & Niaz, M. (2012). Investigating the effectiveness of a POE-based teaching activity on students’ understanding of condensation. Instructional Science, 40, 47–67.

Darmana, A., Sutiani, A., Nasution, H. A., Sylvia, N. S. A., Aminah, N., & Utami, T. (2021). Analysis of multi rater with facets on instruments HOTS of solution chemistry based on Tawheed. Journal of Physics: Conference Series, 1819(1). https://doi.org/10.1088/1742-6596/1819/1/012038

Eckes, T. (2019). Quantitative data analysis for language assessment volume i chapter Many-facet Rasch measurement Implications for rater-mediated language assessment (1st Editio). Routledge.

Fariyani, Q., Rusilowati, A., & Sugianto, S. (2017). Four-tier diagnostic test to identify misconceptions in geometrical optics. Unnes Science Education Journal, 6(3), 1724–1729.

Greca, I. M., Seoane, E., & Arriassecq, I. (2014). Epistemological issues concerning computer simulations in science and their implications for science education. Science and Education, 23(4), 897–921. https://doi.org/10.1007/s11191-013-9673-7

Güler, N. (2014). Analysis of open-ended statistics questions with Many Facet Rasch Model. Eurasian Journal of Educational Research, 55, 73–90. https://doi.org/10.14689/ejer.2014.55.5

Gurel, D. K., Eryilmaz, A., & McDermott, L. C. (2015). A review and comparison of diagnostic instruments to identify students’ misconceptions in science. Eurasia Journal of Mathematics, Science and Technology Education, 11(5), 989–1008. https://doi.org/10.12973/eurasia.2015.1369a

Hammer, D. (1996). More than misconceptions: Multiple perspectives on student knowledge and reasoning, and an appropriate role for education research. American Journal of Physics, 64(10), 1316–1325. https://doi.org/10.1119/1.18376

Hermita, N., Suhandi, A., Syaodih, E., Samsudin, A., Isjoni, Johan, H., Rosa, F., Setyaningsih, R., Sapriadil, & Safitri, D. (2017). Constructing and implementing a four tier test about static electricity to diagnose pre-service elementary school teachers’ misconceptions. Journal of Physics: Conference Series, 895(1). https://doi.org/10.1088/1742-6596/895/1/012167

Heyd-Metzuyanim, E., & Schwarz, B. B. (2017). Conceptual change within dyadic interactions: The dance of conceptual and material agency. Instructional Science, 45(5), 645–677. https://doi.org/10.1007/s11251-017-9419-z

Husnah, I., Suhandi, A., & Samsudin, A. (2020). Analyzing K-11 students’ boiling conceptions with BFT-test using Rasch Model: A case study in the COVID-19 pandemic. Tadris: Jurnal Keguruan Dan Ilmu Tarbiyah, 5(2), 225–239. https://doi.org/10.24042/tadris.v5i2.6871

Ismail, I. I., Samsudin, A., Suhendi, E., & Kaniawati, I. (2015). Diagnostik miskonsepsi melalui listrik dinamis four tier test view project conceptual change and mental model in the physics conceptions view project. Prosiding Simposium Nasional Inovasi dan Pembelajaran Sains 2015, June. https://www.researchgate.net/publication/301523361

Jauhariyah, M. N. R., Suprapto, N., Suliyanah, Admoko, S., Setyarsih, W., Harizah, Z., & Zulfa, I. (2018). The students’ misconceptions profile on chapter gas kinetic theory. Journal of Physics: Conference Series, 997(1). https://doi.org/10.1088/1742-6596/997/1/012031

Kaltakci-Gurel, D., Eryilmaz, A., & McDermott, L. C. (2017). Development and application of a four-tier test to assess pre-service physics teachers’ misconceptions about geometrical optics. Research in Science and Technological Education, 35(2), 238–260. https://doi.org/10.1080/02635143.2017.1310094

Kaltakçi, D., & Didiç, N. (2007). Identification of pre-service physics teachers’ misconceptions on gravity concept: A study with a 3-tier misconception test. AIP Conference Proceedings, 899(April 2007), 499–500. https://doi.org/10.1063/1.2733255

Kaniawati, I., Rahmadani, S., Fratiwi, N. J., Suyana, I., Danawan, A., Samsudin, A., & Suhendi, E. (2020). An analysis of students’ misconceptions about the implementation of active learning of optics and photonics approach assisted by computer simulation. International Journal of Emerging Technologies in Learning, 15(9), 76–93. https://doi.org/10.3991/ijet.v15i09.12217

Koçak, D. (2020). Investigation of rater tendencies and reliability in different assessment methods with many facet Rasch model. International Electronic Journal of Elementary Education, 12(4), 349–358.

Kocakulah, M. S., & Kural, M. (2010). Investigation of conceptual change about double-slit interference in secondary school physics. International Journal of Environmental and Science Education, 5(4), 435–460.

Kucukozer, M. (2010). Peasant rebellions in the age of globalization: The EZLN in Mexico and the PKK in Turkey. City University of New York.

Liu, G., & Fang, N. (2016). Student misconceptions about force and acceleration in physics and engineering mechanics education. International Journal of Engineering Education, 32(1), 19–29.

Munawaroh, R., Setyarsih, W., Fisika, J., Matematika, F., Ilmu, D., & Alam, P. (2016). Identifikasi miskonsepsi siswa dan penyebabnya pada materi alat optik menggunakan three-tier multiple choice diagnostic test. Jurnal Inovasi Pendidikan Fisika (JIPF), 05(02), 79–81. http://etd.lib.metu.edu.tr/upload/12606

Oberoi, M. (2017). Review of literature on student’s misconceptions in science. International Journal of Scientific Research and Education, 5(3), 6274–6280.

Ohlsson, S., & Cosejo, D. G. (2014). What can be learned from a laboratory model of conceptual change? Descriptive findings and methodological issues. Science and Education, 23(7), 1485–1504. https://doi.org/10.1007/s11191-013-9658-6

Pertiwi, C. A., & Setyarsih, W. (2015). Konsepsi siswa tentang pengaruh gaya pada gerak benda menggunakan instrumen force concept inventory (FCI) Termodifikasi. Jurnal Inovasi Pendidikan Fisika (JIPF), 04(02), 162–168.

Rohmanasari, F., & Ermawati, F. U. (2020). Using four-tier multiple choice diagnostic test to identify misconception profile of 12th grade students in optical instrument concepts. Journal of Physics: Conference Series, 1491(1). https://doi.org/10.1088/1742-6596/1491/1/012011

Rosita, I., Liliawati, W., & Samsudin, A. (2020). Pengembangan instrumen five-tier newton's laws test (5TNLT) untuk mengidentifikasi miskonsepsi dan penyebab miskonsepsi siswa. Jurnal Pendidikan Fisika Dan Teknologi, 6(2), 297–306. https://doi.org/10.29303/jpft.v6i2.2018

Salamah, L. M., Yulianti, E., & Arif, H. (2017). Pengembangan instrumen diagnostik three-tier untuk mengidentifikasi miskonsepsi siswa SMP pada konsep cahaya. In Prosiding Seminar Nasional Pembelajaran Ipa Ke-2. http://ipa.fmipa.um.ac.id/

Salmadhia, F., Rusnayati, H., & Liliawati, W. (2021). Five-tier geometrical optics test feasibility to identify misconception and the causes in high school students. Berkala Ilmiah Pendidikan Fisika, 9(2), 141. https://doi.org/10.20527/bipf.v9i2.8874

Shen, J., Liu, O. L., & Chang, H. Y. (2017). Assessing students’ deep conceptual understanding in physical sciences: an example on sinking and floating. International Journal of Science and Mathematics Education, 15(1), 57–70. https://doi.org/10.1007/s10763-015-9680-z

Stein, M., Larrabee, T. G., & Barman, C. R. (2008). A study of common beliefs and misconceptions in physical science. Journal of Elementary Science Education, 20(2), 1–11. https://doi.org/10.1007/bf03173666

Sumintono, B., & Widhiarsho, W. (2015). Aplikasi pemodelan rasch pada assesment pendidikan. Trim Komunikata.

Suprapto, N. (2020). Do we experience misconceptions?: An ontological review of misconceptions in science. Studies in Philosophy of Science and Education, 1(2), 50–55. https://doi.org/10.46627/sipose.v1i2.24

Thiagarajan, S. A. O. (1974). Instructional development for training teachers of exceptional children: a sourcebook. Indiana Univ., Bloomington. Center for Innovation in Teaching the Handicapped.

Umar, F. A., Samsudin, A., Ramalis, T. R., Sa’diyah, L. H., Dalila, A. A., & Komalasari, K. (2021). Uyo and nanu misconception investigation (UNAMI) on sound-light waves materials in North Sulawesi. Journal of Physics: Conference Series, 2098(1). https://doi.org/10.1088/1742-6596/2098/1/012027

Wilson, F. R., Pan, W., & Schumsky, D. A. (2012). Recalculation of the critical values for Lawshe’s content validity ratio. Measurement and Evaluation in Counseling and Development, 45(3), 197–210. https://doi.org/10.1177/0748175612440286

Zhou, S., Wang, Y., & Zhang, C. (2016). Pre-service science teachers’ PCK: Inconsistency of pre-service teachers’ predictions and student learning difficulties in Newton’s third law. Eurasia Journal of Mathematics, Science and Technology Education, 12(3), 373–385. https://doi.org/10.12973/eurasia.2016.1203a




DOI: http://dx.doi.org/10.24042/tadris.v8i2.13733

Refbacks

  • There are currently no refbacks.




Creative Commons License

Tadris: Jurnal Keguruan dan Ilmu Tarbiyah is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licensep-ISSN 2301-7562e-ISSN 2579-7964