Integrating counseling with technology: An evaluation of the Bicarakan.id application through user review analysis with machine learning

Harun Al Azies, Hani Brilianti Rochmanto, Cindy Asli Pravesti, Fenny Fitriani

Abstract


Online counseling has transformed mental health services by offering a convenient and cost-effective alternative to traditional in-person therapy. This study investigates the role of technology in counseling by analyzing user reviews of the Bicarakan.id app from the Google Play Store. A machine learning approach was employed to identify critical patterns and themes within the reviews. Text pre-processing methods such as tokenization, stop-word removal, and TF-IDF vectorization were applied to a dataset of 125 user reviews. The Elbow method helped determine the optimal number of clusters, which was three. Clustering performance was assessed using the Silhouette score, with three clusters yielding the highest average score of 0.4939, indicating a moderate level of clustering effectiveness. Cluster 1 primarily contained positive reviews, emphasizing user satisfaction with the app's services. Cluster 2 included more specific feedback on users' experiences with counselors and app features. Cluster 3 focused on the app's accessibility and ease of use while raising concerns about data privacy and the lack of offline consultation options. The study underscores the significance of using user feedback to enhance and improve technology-driven mental health solutions.


Keywords


Machine learning; mental health services; online counseling; text clustering; user reviews

Full Text:

PDF

References


Abd Rahman, R., Omar, K., Noah, S. A. M., Danuri, M. S. N. M., & Al-Garadi, M. A. (2020). Application of machine learning methods in mental health detection: a systematic review. Ieee Access, 8, 183952–183964.

Al Azies, H., Rohmatullah, F. A., Rochmanto, H. B., & Isnarwaty, D. P. (2024). Towards optimization: A data-driven approach using k-medoids clustering algorithm for regional education quality assessment. Jurnal Informatika Dan Teknik Elektro Terapan, 12(3).

Amer, A. A., & Abdalla, H. I. (2020). A set theory based similarity measure for text clustering and classification. Journal of Big Data, 7(1), 74.

Amos, P. M., Bedu-Addo, P. K. A., & Antwi, T. (2020). Experiences of online counseling among undergraduates in some Ghanaian universities. Sage Open, 10(3), 2158244020941844.

Anreaja, L. J., Harefa, N. N., Negara, J. G. P., Pribyantara, V. N. H., & Prasetyo, A. B. (2022). Naive bayes and support vector machine algorithm for sentiment analysis opensea mobile application users in Indonesia. JISA (Jurnal Informatika Dan Sains), 5(1), 62–68.

Ashabi, A., Sahibuddin, S. Bin, & Salkhordeh Haghighi, M. (2020). The systematic review of K-means clustering algorithm. Proceedings of the 2020 9th International Conference on Networks, Communication and Computing, 13–18.

Chai, C. P. (2023). Comparison of text preprocessing methods. Natural Language Engineering, 29(3), 509–553.

Chen, Q., Chen, C., Hassan, S., Xing, Z., Xia, X., & Hassan, A. E. (2021). How should i improve the ui of my app? A study of user reviews of popular apps in the google play. ACM Transactions on Software Engineering and Methodology (TOSEM), 30(3), 1–38.

Chen, X., Xie, H., Cheng, G., Poon, L. K. M., Leng, M., & Wang, F. L. (2020). Trends and features of the applications of natural language processing techniques for clinical trials text analysis. Applied Sciences, 10(6), 2157.

Faisal, M., & Zamzami, E. M. (2020). Comparative analysis of inter-centroid K-Means performance using euclidean distance, canberra distance and manhattan distance. Journal of Physics: Conference Series, 1566(1), 012112.

Figueroa, C. A., & Aguilera, A. (2020). The need for a mental health technology revolution in the COVID-19 pandemic. Frontiers in Psychiatry, 11, 523.

Fontaine, G., Cossette, S., Gagnon, M.-P., Dubé, V., & Côté, J. (2020). Effectiveness of a theory-and web-based adaptive implementation intervention on nurses’ and nursing students’ intentions to provide brief counseling: protocol for a randomized controlled trial. JMIR Research Protocols, 9(7), e18894.

Goldberg, S. B., Flemotomos, N., Martinez, V. R., Tanana, M. J., Kuo, P. B., Pace, B. T., Villatte, J. L., Georgiou, P. G., Van Epps, J., & Imel, Z. E. (2020). Machine learning and natural language processing in psychotherapy research: Alliance as example use case. Journal of Counseling Psychology, 67(4), 438.

Gruber, J., Prinstein, M. J., Clark, L. A., Rottenberg, J., Abramowitz, J. S., Albano, A. M., Aldao, A., Borelli, J. L., Chung, T., & Davila, J. (2021). Mental health and clinical psychological science in the time of COVID-19: Challenges, opportunities, and a call to action. American Psychologist, 76(3), 409.

Halim, Z., Waqar, M., & Tahir, M. (2020). A machine learning-based investigation utilizing the in-text features for the identification of dominant emotion in an email. Knowledge-Based Systems, 208, 106443.

Hamka, M., & Ramdhoni, N. (2022). K-means cluster optimization for potentiality student grouping using elbow method. AIP Conference Proceedings, 2578(1).

Hiremath, B. N., & Patil, M. M. (2022). Enhancing optimized personalized therapy in clinical decision support system using natural language processing. Journal of King Saud University-Computer and Information Sciences, 34(6), 2840–2848.

Ifdil, I., Fadli, R. P., Suranata, K., Zola, N., & Ardi, Z. (2020). Online mental health services in Indonesia during the COVID-19 outbreak. Asian Journal of Psychiatry, 51, 102153.

Javed, M., & Kamal, S. (2018). Normalization of unstructured and informal text in sentiment analysis. International Journal of Advanced Computer Science and Applications, 9(10).

Jena, P. K. (2020). Challenges and Opportunities created by Covid-19 for ODL: A case study of IGNOU. International Journal for Innovative Research in Multidisciplinary Field (IJIRMF), 6.

Kaveladze, B. T., Wasil, A. R., Bunyi, J. B., Ramirez, V., & Schueller, S. M. (2022). User experience, engagement, and popularity in mental health apps: Secondary analysis of app analytics and expert app reviews. JMIR Human Factors, 9(1), e30766.

Kheder, H. A. (2023). Human-Computer Interaction: Enhancing User Experience in Interactive Systems. Kufa Journal of Engineering, 14(4), 23–41.

Lattie, E. G., Stiles-Shields, C., & Graham, A. K. (2022). An overview of and recommendations for more accessible digital mental health services. Nature Reviews Psychology, 1(2), 87–100.

Lund, B., & Ma, J. (2021). A review of cluster analysis techniques and their uses in library and information science research: K-means and k-medoids clustering. Performance Measurement and Metrics, 22(3), 161–173.

Monica, M., Ayuningtiyas, N. U., Al Azies, H., Riefky, M., Khusna, H., & Rahayu, S. P. (2021). Unsupervised learning approach for evaluating the impact of COVID-19 on economic growth in Indonesia. Soft Computing in Data Science: 6th International Conference, SCDS 2021, Virtual Event, November 2–3, 2021, Proceedings 6, 54–70.

Naeem, S., & Wumaier, A. (2018). Study and implementing K-mean clustering algorithm on English text and techniques to find the optimal value of K. International Journal of Computer Applications, 182(31), 7–14.

Okoye, K., Arrona-Palacios, A., Camacho-Zuñiga, C., Achem, J. A. G., Escamilla, J., & Hosseini, S. (2022). Towards teaching analytics: a contextual model for analysis of students’ evaluation of teaching through text mining and machine learning classification. Education and Information Technologies, 1–43.

Omoregbe, N. A. I., Ndaman, I. O., Misra, S., Abayomi-Alli, O. O., & Damaševičius, R. (2020). Text Messaging‐based medical diagnosis using natural language processing and fuzzy logic. Journal of Healthcare Engineering, 2020(1), 8839524.

Oti, E. U., Olusola, M. O., Eze, F. C., & Enogwe, S. U. (2021). Comprehensive review of K-Means clustering algorithms. Criterion, 12, 22–23.

Palomino, M. A., & Aider, F. (2022). Evaluating the effectiveness of text pre-processing in sentiment analysis. Applied Sciences, 12(17), 8765.

Rahmadiana, M., Karyotaki, E., Schulte, M., Ebert, D. D., Passchier, J., Cuijpers, P., Berger, T., van Ballegooijen, W., Wimbarti, S., & Riper, H. (2021). Transdiagnostic internet intervention for Indonesian university students with depression and anxiety: evaluation of feasibility and acceptability. JMIR Mental Health, 8(3), e20036.

Ramos-Lima, L. F., Waikamp, V., Antonelli-Salgado, T., Passos, I. C., & Freitas, L. H. M. (2020). The use of machine learning techniques in trauma-related disorders: a systematic review. Journal of Psychiatric Research, 121, 159–172.

Robledo Yamamoto, F., Voida, A., & Voida, S. (2021). From therapy to teletherapy: Relocating mental health services online. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 1–30.

Shutaywi, M., & Kachouie, N. N. (2021). Silhouette analysis for performance evaluation in machine learning with applications to clustering. Entropy, 23(6), 759.

Siino, M., Tinnirello, I., & La Cascia, M. (2024). Is text preprocessing still worth the time? A comparative survey on the influence of popular preprocessing methods on Transformers and traditional classifiers. Information Systems, 121, 102342.

Vel, S. S. (2021). Pre-processing techniques of text mining using computational linguistics and python libraries. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), 879–884.

Wahyuningsih, T., & Chen, S. C. (2024). Analyzing sentiment trends and patterns in bitcoin-related tweets using TF-IDF vectorization and K-Means clustering. Journal of Current Research in Blockchain, 1(1), 48–69.

Xie, I., Lee, T. H., Lee, H. S., Wang, S., & Babu, R. (2023). Comparison of accessibility and usability of digital libraries in mobile platforms: Blind and visually impaired users’ assessment. Information Research an International Electronic Journal, 28(3), 59–82.

Xu, Y., Chan, C. S., Chan, E., Chen, J., Cheung, F., Xu, Z., Liu, J., & Yip, P. S. F. (2024). Tracking and profiling repeated users over time in text-based counseling: Longitudinal observational study with hierarchical clustering. Journal of Medical Internet Research, 26, e50976.




DOI: http://dx.doi.org/10.24042/kons.v11i2.24357

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 All authors

License URL: https://creativecommons.org/licenses/by-sa/4.0

rajajp188

klik4d

cukong88

12djarum