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 In this article, we propose a novel application of the single decrement 
method with a likelihood approach to estimate the hazard function of 
earthquake events in Aceh province. While this method has 
traditionally been used in actuarial sciences for mortality table 
estimation, its application in seismic hazard estimation represents a 
new perspective in the field of earthquake risk analysis. To enhance 
the accuracy of the model, we applied the Box-Cox transformation to 
normalize the data and used simple regression to formulate the 
hazard function. Our results demonstrate that a cubic equation 
provides a more accurate model compared to linear and quadratic 
equations, as evidenced by the lower Mean Square Error (MSE). This 
study offers a new approach to hazard rate estimation that surpasses 
conventional methods by providing more informative and 
interpretable results for earthquake risk assessment. 

 

http://ejournal.radenintan.ac.id/index.php/desimal/index 

 

 

INTRODUCTION 

An earthquake is an activity of 
releasing energy from the earth suddenly, 
quickly, and creeping in all directions as a 
seismic wave (Jena, Pradhan, & Beydoun, 
2020). According to Jena, Pradhan, 
Beydoun, Nizamuddin, et al. (2020), 
earthquakes have very strong destructive 
power and wide reach. In general, there 
are three categories of sources of 

earthquake events, namely collapse, 
volcanic activity, and tectonics (Jena, 
Pradhan, Beydoun, Nizamuddin, et al., 
2020). In Indonesia, tectonic earthquakes 
are the most frequent (Liu et al., 2023; 
Tokuda & Nagao, 2023). 

Geographically, the Indonesian 
archipelago is located at the confluence of 
three earth crust plates, namely Eurasia, 
the Pacific, and Indo-Australia 
(Koshimura, Oie, Yanagisawa, & Imamura, 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1510197406&1&&
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2009). Geologically, Indonesia is located at 
the meeting point of two major 
earthquake lines, namely the Pacific Rim 
and the Transasiatic Alps. Therefore, 
Indonesia has quite high earthquake 
activity (Putra, Kiyono, Ono, & Parajuli, 
2012; Triyoso, 2023). In recent years, 
natural disasters due to earthquakes have 
often occurred and caused loss of life and 
property. In Aceh, the last largest 
earthquake occurred on December 26, 
2004, centered off the west coast of Aceh 
Province with Ms = 8.9. The earthquake 
triggered a tsunami that affected 11 Asian 
countries with a death toll of more than 
80,000 people. Moreover, the earthquake 
that occurred in Pidie Jaya claimed many 
lives in 2016.  

The level of danger has a significant 
influence on the theory of the possibility of 
an earthquake occurring (Jena, Pradhan, 
Beydoun, Al-Amri, & Sofyan, 2020). If the 
hazard level is known, then the joint 
function distribution for the realization of 
earthquake event data in (0, T) can be 
identified (Danciu, Kale, & Akkar, 2018). 
Therefore, an accurate parametric model 
is needed to estimate the level of danger 
(Banyunegoro, Alatas, Jihad, Eridawati, & 
Muksin, 2019). In general, the level of 
earthquake hazard is calculated using a 
single decrement method with a likelihood 
approach (Nurtiti, Kresna, Islamiyati, & 
Raupong, 2013), which is adapted from 
the actuarial science method for 
estimating mortality tables (Price, 
Drovandi, Lee, & Nott, 2018). This 
approach contrasts with the traditional 
point process method introduced by Vere-
Jones in 1995 (Daley, 2006), which relies 
on nonlinear equations that are difficult to 
solve analytically and therefore require 
numerical solutions. Our study shows that 
the single decrement hazard rate method 
provides more informative results 
compared to the point process likelihood 
method, which offers a new perspective on 
earthquake hazard estimation (Nurtiti et 
al., 2013). Other related articles looking at 

the level of danger can be seen in Anagnos 
& Kiremidjian (1988); Corral (2005); 
Kameshwar & Padgett (2014); Kijko & 
Sellevoll (1989); and Youngs & 
Coppersmith (1986). 

The results of this study show that 
the single decrement hazard rate method 
provides more informative results than 
the point process hazard rate likelihood 
method. Although this method originates 
from actuarial science, where it is used to 
estimate mortality rates, it is adaptable to 
earthquake hazard estimation because 
both phenomena deal with probabilistic 
events over time (Novika, Maulidi, 
Marsanto, & Amalina, 2022). Earthquakes, 
like mortality, can be modeled as a series 
of stochastic events that occur within a 
specific timeframe, making the single 
decrement method a suitable alternative 
(Cipta et al., 2021). 

Moreover, the single decrement 
method allows for a more nuanced 
understanding of the hazard function by 
incorporating variables and assumptions 
relevant to seismic activity, such as 
regional seismicity rates and fault activity. 
Several studies in hazard analysis have 
explored similar probabilistic approaches 
(Anagnos & Kiremidjian, 1988; Cipta et al., 
2021; Corral, 2005; Kijko & Sellevoll, 
1989), though none have directly applied 
the actuarial-based decrement method.  

Our study builds on this foundation, 
demonstrating that this actuarial 
approach offers a clearer, more 
interpretable measure of hazard rates 
compared to traditional point process 
models, which often require complex 
numerical solutions. The estimation of 
hazard rates using the single decrement 
method consists of two sub-methods: the 
likelihood approach and the moment 
approach (Socquet, Hollingsworth, 
Pathier, & Bouchon, 2019). Using the 
likelihood approach, exit time information 
is required, that is, the information on the 
number of earthquake events after 𝑡0. As 
usual in actuarial theory, in this article the 
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hazard rate at the point 𝑡0 is symbolized 
by 𝜇𝑡0

 (Zhao, Khosa, Ahmad, Aslam, & 

Afify, 2020).  

METHOD  

The method used to estimate the 
hazard rate values in this article is a single 
decrement method, which is a method in 
the actuarial study of developing a 
mortality table (Lee, Ha, & Lee, 2021). The 
data used in the analysis is data that is 
sourced from BMKG. The data are the 
earthquake data in Aceh during the 1980-
2013 period, which had a strength of more 
than or equal to 5 SR. Following are the 
steps to formulate earthquake hazard rate, 
which: 

1. Estimate the value of earthquake 
hazard rate from the data in 1980-
2012 with consideration of waiting 
time for linear and exponential 
distribution. 

2. Determine the best parametric 
equation to determine the hazard 
rate by using the assumption of 
linear, quadratic, and cubic 
equations.  

Suppose that X(t0)  =  T – t0 
expresses a waiting time of the forward 
earthquake event if t0 is the time of the 
first earthquake event that has been 
known and T is a time of the next 
earthquake. For example, if the first 
earthquake occurred in 2013 and the next 
earthquake occurred in 2017, then X(t) =
 2017 − 2013 = 4 years. 

Let μ, S, and f in order be a hazard 
rate, a survival function, and a probability 
density function. The hazard rate at time 
t0 can be defined as  

μt0
= lim

∆t0→0

P(t0≤T≤t0+∆t0 | T>t0)

∆t0
 ≈

f(t0)

S(t0)
       (1) 

Suppose that y = t0, by integrating 
both sides of Equation (1) we obtain 

S(y) = exp [− ∫ μy dy
t0+∆t0

t0
]. 

If  t0 = 0 , is a short moment after the 
earthquake, then  

pto∆t0
= S(t0)     = P(T > t0 + ∆t0 | T

> t0)

=  exp [− ∫ μ(t0 + s) ds
∆t0

0

] 

is a survival function. 
The estimation of the hazard rate by 

using a single decrement with the 
Likelihood approach requires exit time 
information, which is a time on the 
earthquake event. Let dt0  be a number of 

earthquakes that occurred in the interval 
[t0 ,  t0 + 1] and nt0

− dt0
 be a number of 

earthquakes that occurred after  t0 + 1. 
Likelihood L for the i-th earthquake in the 
interval (ti ,  ti + 1] is given as follows, 
assuming there is no event until t0. 

Li = f(t0(i) | T > t0(i)) =
f(t0(i))

S(t0)
=

S(t0(i)) μ(t0(i))

S(t0(i))
                  (2) 

is the contribution of the i-th 
earthquake on L. Since yi = t0(i) + t0 is a 
time of the i-th earthquake that occurred 
in the interval (0 ,  t0 + 1] with 0 < yi ≤ 1, 
then 

Li =
S(t0+yi) μ(t0+yi)

S(t0)
= pt0yi

μt0+yi
          (3) 

The contribution of a number of 

earthquake dt0  on L is ∏ pt0yi
μt0+yi

d
i=1 . 

The nt0
− dt0

, a number of earthquakes 

after  t0 + 1, is (pt0
)

nt0−dt0 . In this case, nt0
 

represents a number of earthquakes that 
occur on and after t0. Therefore, the total 
of the likelihood is 

L = (1 − qt0
)nt0−dt0 ∏ pt0yi

μt0+yi

dt0

i=1
         (4) 

 
Solving Equation (4), it is required to 

make an assumption that the distribution 

pt0 yi
μt0+yi

 as a function of qt0
. Here, it has 

been assumed that lt0+y, which is a 

number of earthquakes after t0 + y as a 
linear function and an exponential 
function. By using the linear assumption 
for lt0+y = a + by, it can be obtained qt0̂

=
dt0

nt0

 which is the maximum likelihood 

estimation for qt0
. Furthermore, the 
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hazard rate values can be obtained by 
using the equation 

 μt0̂
=

qt0̂

1 − qt0̂

                            (5) 

And after the hazard rate has been 
known for each point, the parametric 
equation can be estimated by using the 
regression method.  

Suppose that lt0+y  is an exponential 

function, ly = aby ,  then the estimation of 

the hazard rate is  

μ̂ =
dt0

(nt0−dt0)+∑ yi
dt0
i=0

,                      (6) 

which is the maximum likelihood 
estimation for μ.  

RESULTS AND DISCUSSION 

The estimation of hazard rates of the 
earthquakes  

Here we show the plot of the 
magnitude to the time and the location of 
the earthquake area study. 

 

 

Figure 1. Plot of the Magnitude with Respect to the Time for the Area Study. 

 

 

Figure 2. Plot of the Earthquake Event Location for the Area Study. 

 
The estimation of hazard rate using 

the single decrement method with the 
likelihood approach can be obtained by 

using Equations (5) and (6). This following 
table is the result of the hazard rate 
estimation by using Equation (5). 
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Table 1. The Result of the Hazard Rate with the Likelihood Approach for the Waiting 
Time Assumed as a Linear Function when There is No Earthquake until 𝑡0. 

Interval Tahun 𝐝𝐭𝟎
 𝐧𝐭𝟎

 𝐪𝐭𝟎
 𝛍𝐭𝟎

 

(0,1] 1980 2 490 0.0041 0.0041 

(1,2] 1981 2 488 0.0041 0.0041 

(2,3] 1982 6 486 0.0123 0.0125 

(3,4] 1983 8 480 0.0167 0.0169 

(4,5] 1984 4 472 0.0085 0.0085 

(4,6] 1985 4 468 0.0085 0.0086 

(6,7] 1986 4 464 0.0086 0.0087 

(7,8] 1987 6 460 0.0130 0.0132 

(8,9] 1988 4 454 0.0088 0.0089 

(9,10] 1989 8 450 0.0178 0.0181 

(10,11] 1990 15 442 0.0339 0.0351 

(11,12] 1991 9 427 0.0211 0.0215 

(12,13] 1992 2 418 0.0048 0.0048 

(13,14] 1993 5 416 0.0120 0.0122 

(14,15] 1994 5 411 0.0122 0.0123 

(15,16] 1995 6 406 0.0148 0.0150 

(16,17] 1996 5 400 0.0125 0.0127 

(17,18] 1997 4 395 0.0101 0.0102 

(18,19] 1998 0 391 0.0000 0.0000 

(19,20] 1999 6 391 0.0153 0.0156 

(20,21] 2000 7 385 0.0182 0.0185 

(21,22] 2001 5 378 0.0132 0.0134 

(22,23] 2002 15 373 0.0402 0.0419 

(23,24] 2003 9 358 0.0251 0.0258 

(24,25] 2004 46 349 0.1318 0.1518 

(25,26] 2005 142 303 0.4686 0.8820 

(26,27] 2006 37 161 0.2298 0.2984 

(27,28] 2007 28 124 0.2258 0.2917 

(28,29] 2008 25 96 0.2604 0.3521 

(29,30] 2009 13 71 0.1831 0.2241 

(30,31] 2010 1 58 0.3103 0.4500 

(31,32] 2011 13 40 0.3250 0.4815 

(32,33] 2012 16 27 0.5926 1.4545 
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Table 2. The Result of the Hazard Rate with the Likelihood Approach for the Waiting 
Time Assumed as an Exponential Function when There is No Earthquake until 𝑡0. 

Interval Tahun ∑ 𝐲𝐢

𝐧

𝐢=𝟏
 𝐧𝐭𝟎

− 𝐝𝐭𝟎
 𝐝𝐭𝟎

 𝐪𝐭𝟎
 𝛍𝐭𝟎

 

(0,1] 1980 0.9657 488 2 0.0041 0.0041 

(1,2] 1981 0.8068 486 2 0.0041 0.0041 

(2,3] 1982 2.1123 480 6 0.0123 0.0124 

(3,4] 1983 3.0767 472 8 0.0166 0.0168 

(4,5] 1984 1.7630 468 4 0.0084 0.0085 

(4,6] 1985 1.7383 464 4 0.0085 0.0086 

(6,7] 1986 2.1780 460 4 0.0086 0.0087 

(7,8] 1987 3.5945 454 6 0.0129 0.0131 

(8,9] 1988 1.9109 450 4 0.0088 0.0089 

(9,10] 1989 6.2876 442 8 0.0175 0.0178 

(10,11] 1990 9.2794 427 15 0.0332 0.0344 

(11,12] 1991 3.3616 418 9 0.0209 0.0214 

(12,13] 1992 1.3273 416 2 0.0048 0.0048 

(13,14] 1993 2.7808 411 5 0.0119 0.0121 

(14,15] 1994 2.3136 406 5 0.0121 0.0122 

(15,16] 1995 3.1849 400 6 0.0147 0.0149 

(16,17] 1996 3.5643 395 5 0.0124 0.0125 

(17,18] 1997 2.0684 391 4 0.0101 0.0102 

(18,19] 1998 0 391 0 0 0 

(19,20] 1999 2.3068 385 6 0.0153 0.0155 

(20,21] 2000 3.6753 378 7 0.0180 0.0183 

(21,22] 2001 3.4219 373 5 0.0131 0.0133 

(22,23] 2002 8.1972 358 15 0.0393 0.0410 

(23,24] 2003 5.0767 349 9 0.0248 0.0254 

(24,25] 2004 45.5945 303 46 0.1166 0.1320 

(25,26] 2005 50.4287 161 142 0.4018 0.6716 

(26,27] 2006 16.2095 124 37 0.2088 0.2639 

(27,28] 2007 15.3630 96 28 0.2009 0.2514 

(28,29] 2008 8.3890 71 25 0.2395 0.3149 

(29,30] 2009 5.9109 58 13 0.1690 0.2034 

(30,31] 2010 8.9068 40 18 0.2690 0.3680 

(31,32] 2011 3.6904 27 13 0.2975 0.4236 

(32,33] 2012 6.2 11 16 0.4819 0.9302 

 
The estimation of the parametric 
hazard function  

The results in Table 1 and Table 2 
consist of the value of the hazard rates 
with the waiting time linear and 
exponential function at time t0 denoted by 
the symbol μt0

. To estimate the regression 

equation of the hazard rates, it is needed 
that the property that the hazard rate 
must be normally distributed (Lu, Wang, 
Huang, & Chen, 2023). However, according 

to the QQ-plot results of the hazard rate in 
Table 1 and Table 2, the hazard rates are 
not normally distributed, so it is necessary 
to normalize this hazard value by first 
removing the value of the hazard rate, 
which is an outlier. 

By using Box-Cox Transformation 
for the hazard rate values from Table 1 
and Table 2, we obtained the value of λ, 
respectively, as -0.5 and -0.5. It means that 
the transformation that should be applied 
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is (µt0
)−0.5 for both of the assumptions. So, 

it is needed to inverse transform to obtain 
µt0

. The inverse transformation is 

µt0
= (µt0

∗ )−2 =
1

µt0
∗ 2                        (7) 

The process to determine the 
parametric model has been done by the 
regression method for the hazard rate 
using the linear model µt0

∗ = β0 + β1t0 + ε, 

the quadratic model µt0
∗ = β0 + β1t0 +

β2t0
2 + ε, and the cubic model µt0

∗ = β0 +

β1t0 + β2t0
2 + β3t0

3 + ε.  
Based on the results of the 

transformation of the hazard rate values in 
Table 1, it has been obtained that the 
linear and cubic models are the exact 
models by the test of the significance of the 
regression coefficients, while the 
quadratic model is not exact. Moreover, 

the cubic model is the best model because 
the Mean Square Error (MSE) of the cubic 
model is smaller than the linear model. 

By using the inverse transformation, 
Equation (7), the equation of the hazard 
rate in Table 1 can be expressed as  

µt0̂
=

1

(13.567−0.919t0+0.061t0
2−0.002t0

3)2           (8) 

 
If Equation (8) is assumed to be able 

to predict the hazard rate in the future, 
then this model can be used. For example, 
the hazard rate in Aceh in 2020, given the 
information that the last event occurred in 
2018, is 

µ2
̂

=
1

(13.567 − 0.919(2) + 0.061(2)2 − 0.002(2)3)2

= 0.00699 

 

Table 3. The Model Estimation of  the Hazard Rate in Table 1. 

Model MSE 
 

Regression Test 
(𝛂 = 𝟎. 𝟏) 

µt0

∗̂ = 12.838 − 0.349t0 287.346 Exact 
µt0

∗̂ = 11.762 − 0.123t0 − 0.008t0
2 147.970 No Exact 

µt0

∗̂ = 13.567 − 0.919t0 + 0.061t0
2 − 0.002t0

3 
105.768 

Exact 
 

Based on the results of the 
transformation of the hazard rate values in 
Table 2, it has been obtained that the 
linear and cubic models are the exact 
models by the test of the significance of the 
regression coefficients, while the 
quadratic model is not exact. Moreover, 
the cubic model is the best model because 
the Mean Square Error (MSE) of the cubic 
model is smaller than the linear model. 

By using the inverse transformation, 
as Equation (7), the equation of the hazard 
rate in Table 2 can be expressed as  

µt0

̂ =
1

(13.574+0.917t0−0.060t0
2−0.002t0

3)2.           

(9) 
If Equation (9) is assumed to be able 

to predict the hazard rate in the future, 
then this model can be used. For example, 
the hazard rate in Aceh in 2020, given the 
information that the last event occurred in 
2018, is 

µ2
̂

=
1

(13.574 + 0.917(2) − 0.060(2)2 − 0.002(2)3)2

= 0.00436 

 

Table 4. The Model Estimation of  the Hazard Rate in Table 2. 

Model MSE 
 

Regression Test 
(𝛂 = 𝟎. 𝟏) 

µt0
∗̂ = 12.824 − 0.344t0 280.494 Exact 

µt0
∗̂ = 11.778 − 0.125t0 − 0.007t0

2 144.312 No Exact 
µt0

∗̂ = 13.574 + 0.917t0 − 0.060t0
2 − 0.002t0

3 103.253 Exact 
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CONCLUSIONS AND SUGGESTIONS 

Based on the analysis that has been 
done, it is obtained that the estimation of 
the hazard rate with likelihood 
approached for the number of the events, 
which assumed linear and exponential. 
The results are given in Table 1 and Table 
2. Furthermore, the parametric model to 
estimate these hazard rates has been 
modeled as a linear, a quadratic, and a 
cubic equation. The cubic equation is the 
best model to predict the hazard rate 
accurately. 

Future research could involve 
applying temporal point process models 
to analyze the timing patterns of 
earthquakes, integrating probabilistic 
approaches in seismic risk analysis to 
account for uncertainties in hazard 
estimation. Additionally, exploring multi-
hazard approaches that consider the risks 
of earthquakes alongside other natural 
disasters would be beneficial. 
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