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 Flooding is an example of a random stochastic process. An important 
parameter to determine the chance of a flood occuring is the hazard 
rate. Therefore, a hazard rate estimation model is needed. One of the 
methods used to estimate the hazard rate at point 𝑡0 was the single 
decrement method with a likelihood approach that required exit time 
information, namely the time when a flood occurs and the assumed 
distribution of waiting times for the next flood to occur. The 
distribution of waiting times was assumed to be linear and 
exponential. Hazard rate estimation used flood data that occurred in 
Parepare. The hazard rate estimator obtained using these two 
waiting time assumptions was transformed into a parametric model. 
The parametric model used was a regression model with linear, 
quadratic, and cubic assumptions. Based on the research results, the 
best parametric model was a quadratic regression model for the 
assumed exponential distribution of waiting times based on R Square, 
Mean Square Error, and real regression tests. The estimated hazard 
rate value obtained can be applied to estimate the probability of a 
flood event occurring in the interval (0, 𝑡0]. The selected parametric 
model is expected to be able to estimate the hazard rate value 
accurately. 

 

http://ejournal.radenintan.ac.id/index.php/desimal/index 

 

 

INTRODUCTION 

A stochastic process is a process that 
fits to model phenomena that contain 
elements of uncertainty. An example of the 
use of stochastic processes in phenomena 
that occur is to explain and predict future 
events through a series of calculations and 
analyses carried out. For example, to 
predict natural phenomena such as 

natural disasters (floods, earthquakes, 
landslides, and so on). 

Flooding is an event that occurs due 
to the accumulation of water that falls and 
cannot be accommodated by the ground 
(Yohana, Griandini, & Muzambeq, 2017). 
Flooding is one example of a random 
stochastic process. A stochastic model that 
can explain unpredictable events in space 
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and time is called a point process, where 
the time a flood occurs can be viewed as a 
point in a specific area (Sunusi, Jaya, 
Islamiyati, & Raupong, 2013). In the last 
two years, there have been the worst 
floods ever in Parepare. According to the 
Regional Disaster Management Agency, 
the victims affected by the flood were 
1,354 heads of families and 5,292 people, 
of whom 2 died. Other losses included 
damaged houses, schools, mosques, 
vehicles, and other parts.  

One important parameter to 
determine the chance of a flood occurring 
is the hazard rate. Hazard rate estimation 
used flood data that occurred in Parepare. 
If the hazard rate is known, then the joint 
density distribution for the realization of 
flooding in the interval (0, 𝑇) can be 
known so that the maximum likelihood 
estimator can be known. Therefore, 
obtaining a suitable parametric model is 
essential for estimating the hazard rate. 

Research on hazard rate estimation 
includes estimating the hazard rate using 
a parametric approach, namely through a 
point process likelihood equation called 
the Hazard Rate Likelihood Point Process 
(HRLPT), where this process is limited to 
estimating the hazard rate for the 
observation interval (Ogata, 1999; Vere-
Jones, 1995).  

Furthermore, a method for 
analytically estimating the hazard rate of 
the temporal point process was developed 
for some cases of waiting time and 
predicting the hazard rate in the following 
period (Sunusi, 2010). Another method for 
estimating the hazard rate for flooding is 
the Hazard Rate Single Decrement method 
(Darwis, Sunusi, Gunawan, Mangku, & 
Wahyuningsih, 2009). This method comes 
from the estimation method in actuarial 
studies used in mortality tables. In 
actuarial science, the single-decrement 
approach deals with the study in which 
death is the only random event to which 
sample members are subject. The 
approach is used to construct a mortality 

table to estimate the premium and predict 
the reserve. If both death and withdrawal 
are random events, the environment is 
called a double decrement. Adaptation to 
flood prediction: the single decrement 
approach deals with the study in which 
flood occurrence time is the only random 
event.  

METHOD  

The data used in this research is data 
on the number of flood events in Parepare 
in 2017–2023 from the Parepare City 
Regional Disaster Management Agency. 
The software used to analyze the data is 
IBM SPSS Statistics Version 29. 

Survival analysis is a procedure for 
analyzing data using the time until an 
event occurs (Kleinbaum & Klein, 2007). 
There are two main functions in the 
Survival Analysis, namely the hazard 
function and the survival function (Collet, 
2003). 

The hazard rate at point 𝑡0 is 
symbolized by 𝜇𝑡0

, as is usually used in the 

actuarial field. Let 𝑋(𝑡0) = 𝑇 − 𝑡0 denote 
the waiting time until the next flood occurs 
if it is known that 𝑡0 is the first time a flood 
appears and 𝑇 is the time the next flood 
appears. Let also 𝜇 and 𝑆 denote the 
hazard rate and survival function. Hazard 
rate 𝜇𝑡0

 can be expressed as 

𝜇𝑡0
=  lim

∆𝑡0→0

𝑃(𝑡0 ≤ 𝑇 ≤ 𝑡0 + ∆𝑡0
|𝑇 > 𝑡0)

∆𝑡0

 

 = −
𝑑

𝑑𝑡0
ln 𝑆(𝑡0) =

−
𝑑

𝑑𝑡0
𝑆(𝑡0)

𝑆(𝑡0)
. 

The probability that there will be no 
flooding until 𝑡0 + ∆𝑡0 if it is known that no 
flooding will occur until 𝑡0 is 

∫ 𝑑 ln 𝑆(𝑡0) = − ∫ 𝜇𝑡0
𝑑𝑡0

𝑡0+∆𝑡0

𝑡0

𝑡0+∆𝑡0

𝑡0
  

 ∆𝑡0
𝑝𝑡0

=  𝑒− ∫ 𝜇(𝑡0+𝑠) 𝑑𝑠
∆𝑡0

0 . 

Let 𝑡0 = 0, immediately after the flood 
occurs 

 ∆𝑡0
𝑝𝑡0

=  𝑆(∆𝑡0) = 𝑃(𝑇 > ∆𝑡0) 

= 𝑒− ∫ 𝜇(𝑠) 𝑑𝑠
∆𝑡0

0         
that is the survival function (Le, 1997).  
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The distribution of the recurrent 
time 𝑇 and the waiting time until the next 
flood occurs 𝑋(𝑡0)  are each expressed as 
follows (Bowers, Gerber, Hickman, Jones, 
& Nesbitt, 1997). 

𝑇 ∼  ∆𝑡0
𝑝𝑡0

𝜇𝑡0
 

𝑋(𝑡0) ∼  ∆𝑡0
𝑝𝑡0

𝜇𝑡0+∆𝑡0
. 

The expression  ∆𝑡0
𝑝𝑡0

𝜇𝑡0+∆𝑡0
 states the 

probability that a flood will occur between 
𝑡0  and 𝑡0 + ∆𝑡0 if it is known that no flood 
has occurred until 𝑡0 with 

∫  ∆𝑡0
𝑝𝑡0

𝜇𝑡0+∆𝑡0

∞

0
 𝑑𝑡 = 1  

and 
𝑑

𝑑𝑡
 ∆𝑡0

𝑝𝑡0
= − ∆𝑡0

𝑝𝑡0
𝜇𝑡0+∆𝑡0

. 

Estimating the hazard rate using the 
single-decrement method uses a 
maximum likelihood estimation. The 
maximum likelihood estimation is often 
used because the procedure is clear and 
appropriate for determining the 
parameters of a distribution 
(Krishnamoorthy, 2015). Let 𝑑𝑡0

 denotes 

the number of floods that have occurred in 
the interval (𝑡0, 𝑡0 + 1] and 𝑛𝑡0

− 𝑑𝑡0
 

denotes the flood that occurred after 𝑡0 +
1. Likelihood L for the 𝑖-th flood in the 
interval (𝑡𝑖, 𝑡𝑖 + 1] if it is known that no 
flood has occurred until 𝑡𝑖 is given by  

𝐿𝑖 = 𝑓(𝑡0(𝑖)|𝑇 > 𝑡0(𝑖)) 

=
𝑓(𝑡0(𝑖))

𝑆(𝑡0)
   

=
𝑆(𝑡0(𝑖))𝜇(𝑡0(𝑖))

𝑆(𝑡0)
   

namely the 𝑖-th contribution to L.  
If 𝑦𝑖 = 𝑡0(𝑖) + 𝑡 is the time when the 

𝑖-th flood occurs in the interval (𝑡0, 𝑡0 + 1] 
with 0 < 𝑦𝑖 ≤ 1, then 

𝐿𝑖 =
𝑆(𝑡0 + 𝑦𝑖)𝜇(𝑡0 + 𝑦𝑖)

𝑆(𝑡0)
=  𝑦𝑖

𝑝𝑡0
𝜇𝑡0+𝑦𝑖

. 

The contribution of the number of 

floods 𝑑𝑡0
 to L is ∏  𝑦𝑖

𝑝𝑡0
𝜇𝑡0+𝑦𝑖

𝑑𝑡0

𝑖=1
. The 

contribution of 𝑛𝑡0
− 𝑑𝑡0

 is (𝑝𝑡0
)𝑛𝑡0−𝑑𝑡0  

where 𝑛𝑡0
 denotes the number of floods 

that occurred at or after 𝑡0 so that the total 
likelihood L is 

𝐿 = (𝑝𝑡0
)𝑛𝑡0−𝑑𝑡0 ∏  𝑦𝑖

𝑝𝑡0
𝜇𝑡0+𝑦𝑖

𝑑𝑡0

𝑖=1
.    (1) 

Equation (1) requires an assumption of 
the waiting time for a flood to occur. Those 
assumptions are linear and exponential 
distributions, denoted in the form 𝑞𝑡0

. 

First, for linear distribution, it is 
obtained 

 𝜇𝑡0+𝑦 =
𝑞𝑡0

1− 𝑦𝑞𝑡0

                           (2) 

so that the total likelihood L becomes 

𝐿 = (𝑝𝑡0
)

𝑛𝑡0−𝑑𝑡0 ∏  𝑦𝑖
𝑝𝑡0

𝜇𝑡0+𝑦𝑖

𝑑𝑡0

𝑖=1
  

= (1 − 𝑞𝑡0
)𝑛𝑡0−𝑑𝑡0𝑞𝑡0

𝑑𝑡0 . 

The natural logarithm of 𝐿 is  
ln 𝐿 = (𝑛𝑡0

− 𝑑𝑡0
) ln(1 − 𝑞𝑡0

) + 𝑑𝑡0
ln 𝑞𝑡0

. 

By using the necessary conditions for the 
optimality of the first order derivative, 

𝜕

𝜕𝑞
(ln 𝐿) = 0  

𝑑𝑡0

𝑞𝑡0

−
(𝑛𝑡0−𝑑𝑡0)

1−𝑞𝑡0

= 0  

is obtained. Therefore, 

𝑞̂𝑡0
=

𝑑𝑡0

𝑛𝑡0

.                         (3) 

By using Equations (2) and (3), the 
obtained estimated hazard rate value is 

𝜇̂𝑡0
=

𝑞̂𝑡0

1−𝑞̂𝑡0

.                                       (4) 

Second, for exponential distribution, 
it is obtained 

𝜇𝑡0+𝑦 = − ln(𝑝𝑡0
) and 𝑦𝑝𝑡0

= (𝑝𝑡0
)𝑦 

so that the total likelihood L becomes 

𝐿 = (𝑝𝑡0
)𝑛𝑡0−𝑑𝑡0 ∏  𝑦𝑖

𝑝𝑡0
𝜇𝑡0+𝑦𝑖

𝑑𝑡0

𝑖=1
   

    = 𝜇𝑑𝑡0  exp (−𝜇) [(𝑛𝑡0
− 𝑑𝑡0

) +  ∑ 𝑦𝑖
𝑑𝑡0

𝑖=0
].  

The natural logarithm of 𝐿 is  

ln 𝐿 = 𝑑𝑡0
ln 𝜇 − 𝜇 [(𝑛𝑡0

− 𝑑𝑡0
) + ∑ 𝑦𝑖

𝑑𝑡0

𝑖=0
]. 

By using the necessary conditions for the 
optimality of the first-order derivative, it 
is obtained that 

𝜕

𝜕𝜇
(ln 𝐿) = 0  

𝑑𝑡0

𝜇
− [(𝑛𝑡0

− 𝑑𝑡0
) + ∑ 𝑦𝑖

𝑑𝑡0

𝑖=0
] = 0  

so that the estimated hazard rate value is 

𝜇̂𝑡0
=

𝑑𝑡0

[(𝑛𝑡0−𝑑𝑡0
)+ ∑ 𝑦𝑖

𝑑𝑡0
𝑖=0

]
.                   (5) 

Since 𝑞 corresponds one-to-one with 𝜇, the 
estimator of 𝑞̂𝑡0

 is 

𝑞̂𝑡0
= 1 − 𝑝̂𝑡0

= (1 − 𝑒−𝜇̂𝑡0).         (6) 
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Equation (5) is more informative 
than the linear solution in Equation (4). 
Equation (5) has information on the time 
of occurrence of the event, the number of 
events 𝑑𝑡0

 in the waiting time interval 
(𝑡0, 𝑡0 + 1], and the number of events 
(𝑛𝑡0

− 𝑑𝑡0
) after (𝑡0, 𝑡0 + 1]. Equation (5) 

meets the empirical hazard rate 

requirements based on historical data. 
After the hazard rate value for each point 
is obtained based on the data, the hazard 
rate equation is estimated using a 
parametric model, namely the regression 
model with linear, quadratic, and cubic 
assumptions. Figure 1 shows the research 
flow that has been carried out.

 

 

Figure 1. Research Flowchart 
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RESULTS AND DISCUSSION 

Flood data that occurred in Parepare 
in 2017–2023 is shown in Table 1. 

Table 1. Floods occurred in Parepare in 
2017–2023 

No. Date Location 
1. 16/12/17 Soreang, Wattang Soreang 
2. 16/12/17 Soreang, Bukit Harapan 
3. 17/12/17 Soreang, Wattang Soreang 
4. 17/12/17 Soreang, Bukit Harapan 
5. 
6. 

18/12/17 
05/11/18 

Ujung, Lapadde 
Bacukiki Barat, Cappa Galung 

7. 05/11/18 Bacukiki Barat, Cappa Galung 
8. 18/12/20 Bacukiki, Watang Bacukiki 
9. 18/12/20 Bacukiki, Lemoe 
10. 12/09/21 Ujung, Labukkang 
11. 12/09/21 Ujung, Mallusetasi 
12. 12/09/21 Soreang, Ujung baru 
13. 06/03/22 Bacukiki, Watang Bacukiki 
14. 
15. 
16. 
17. 

18/11/22 
18/11/22 
18/11/22 
18/11/22 

Bacuikiki, Galung Maloang 
Ujung, Lapadde 
Ujung, Lapadde 
Ujung, Lapadde 

18. 18/11/22 Bacukiki, Lompoe 
19. 18/11/22 Ujung, Lapadde 
20. 18/11/22 Ujung, Lapadde 
21. 18/11/22 Ujung, Lapadde 
22. 18/11/22 Bacukiki Barat, Bumi Harapan 
23. 18/11/22 Bacukiki, Watang Bacukiki 
24. 18/11/22 Bacukiki, Watang Bacukiki 
25. 05/01/23 Bacukiki Barat, Lumpue 
26. 01/02/23 Bacukiki, Galung Maloang 
27. 01/02/23 Bacukiki, Lemoe 
28. 01/02/23 Bacukiki, Lompoe 
29. 01/02/23 Bacukiki, Watang Bacukiki 
30. 01/02/23 Bacukiki Barat, Bumi Harapan 
31. 01/02/23 Bacukiki Barat, Lumpue 
32. 01/02/23 Ujung, Lapadde 
33. 01/02/23 Soreang, Bukit Harapan 
34. 01/02/23 Soreang, Ujung Baru 

By using Equations (3), (4), (5), and 
(6), which have been formulated 
previously, the hazard rate values for the 
assumed linear and exponential 
distribution of waiting times are obtained 
in Table 2 and Table 3. 

Table 2. Estimating the Hazard Rate 
Single-Decrement Likelihood Approach 

for Assumed Linear Distribution of 
Waiting Times 

No. Interval Year 𝒅𝒕𝟎
 𝒏𝒕𝟎

 𝒒𝒕𝟎
 𝝁𝒕𝟎

 

1. (0,1] 2017 5 34 0.147 0.172 
2. (1,2] 2018 2 29 0.068 0.074 
3. (2,3] 2019 0 27 0 0 
4. (3,4] 2020 2 27 0.074 0.080 
5. 
6. 

(4,5] 
(5,6] 

2021 
2022 

3 
12 

25 
22 

0.120 
0.545 

0.136 
1.200 

Information: 
𝑑𝑡0

: The number of floods that occur in 

the interval (𝑡0, 𝑡0 + 1]. 
𝑛𝑡0

: The number of floods that occurred 

at or after 𝑡0. 
𝑞𝑡0

:  The probability of a flood occurring 

in the interval (𝑡0, 𝑡0 + 1] if it is 
known that no flood has occurred 
until 𝑡0. 

𝜇𝑡0
: Flood hazard rate immediately after 

𝑡0. 
 
 
 
 
 

 

Table 3. Estimating the Hazard Rate Single-Decrement Likelihood Approach for 
Assumed Exponential Distribution of Waiting Times 

No. Interval Year 𝒅𝒕𝟎
 𝒏𝒕𝟎

− 𝒅𝒕𝟎
 ∑ 𝒚𝒊

𝒅𝒕𝟎

𝒊=𝟏
 𝒒𝒕𝟎

 𝝁𝒕𝟎
 

1. (0,1] 2017 5 29 4.805 0.137 0.147 
2. (1,2] 2018 2 27 1.693 0.067 0.069 
3. (2,3] 2019 0 27 0 0 0 
4. (3,4] 2020 2 25 1.928 0.071 0.074 
5. 
6. 

(4,5] 
(5,6] 

2021 
2022 

3 
12 

22 
10 

2.095 
8.821 

0.117 
0.471 

0.124 
0.673 

Information: 
𝑦𝑖  : Time of appearance of the 𝑖-th flood in the interval (𝑡0, 𝑡0 + 1]. 
𝑑𝑡0

  : The number of floods that occur in the interval (𝑡0, 𝑡0 + 1]. 
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𝑛𝑡0
− 𝑑𝑡0

: The number of floods that occur after 𝑡0 + 1. 

𝑞𝑡0
  : The probability of a flood occurring in the interval (𝑡0, 𝑡0 + 1] if it is known that   

 no flood has occurred until 𝑡0. 
𝜇𝑡0

  : Flood hazard rate immediately after 𝑡0. 

 

 

Figure 2. Plot Hazard Rate for Assumed Linear Distribution of Waiting Times 

 

Figure 3. Plot Hazard Rate for Assumed Exponential Distribution of Waiting Times 

The results in Table 2 and Table 3 
state the hazard rate value for the 
assumed linear and exponential 
distribution of waiting times at 𝑡0 with the 
notation 𝜇𝑡0

. Estimating the regression 

equation from the hazard rate requires the 
condition that the hazard rate must be 
normally distributed. One method to use 
in order to check the normality of the data 
is the P-P plot. Therefore, the P-P plot of 
the hazard rate from Tables 2 and 3 is 
presented in Figures 4 and 5. 
 

 

Figure 4. P-P Plot Hazard Rate for 
Assumed Linear Distribution of Waiting 

Times 
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Figure 5. P-P Plot Hazard Rate for 
Assumed Exponential Distribution of 

Waiting Times 

The hazard rate in Table 2 and Table 
3 is not distributed normally based on 
Figure 4 and Figure 5 because the P-P plot 
hazard rate does not follow a diagonal line. 
Therefore, it is necessary to normalize the 
hazard rate data in Table 2 and Table 3. 
One way to normalize the data is to use the 
Box-Cox transformation. The Box-Cox 
transformation of hazard rate from Table 
1 and Table 2 used value 𝜆 = −0.5 which 
means that the transformation carried out 
was 𝜇𝑡0

∗ = 𝜇𝑡0
−0.5, to obtain the expected 

value of the desired hazard rate. Table 4 
and Table 5 below are the results of the 
Box-Cox transformation of the hazard rate 
from Table 2 and Table 3. 

Table 4. Box-Cox Transformation Results 
Hazard Rate Values for the Assumed 
Linear Distribution of Waiting Times 

No. Interval Year 𝝁𝒕𝟎
 𝝁𝒕𝟎

∗  

1. (0,1] 2017 0.172 2.408 
2. (1,2] 2018 0.074 3.674 
3. (2,3] 2019 0 - 
4. 
5. 
6. 

(3,4] 
(4,5] 
(5,6] 

2020 
2021 
2022 

0.080 
0.136 
1.200 

3.535 
2.708 
0.912 

Information: 

𝜇𝑡0
:  Flood hazard rate immediately after 

𝑡0. 

𝜇𝑡0

∗ :  Flood hazard rate immediately after 

𝑡0 results of the Box-Cox 
transformation 

Table 5. Box-Cox Transformation Results 
Hazard Rate Values for Assumed 

Exponential Distribution of Waiting 
Times 

No. Interval Year 𝝁𝒕𝟎
 𝝁𝒕𝟎

∗  

1. (0,1] 2017 0.147 2.600 
2. (1,2] 2018 0.069 3.787 
3. (2,3] 2019 0 - 
4. (3,4] 2020 0.075 3.669 
5. 
6. 

(4,5] 
(5,6] 

2021 
2022 

0.124 
0.637 

2.834 
1.252 

Information: 

𝜇𝑡0
:  Flood hazard rate immediately after 

𝑡0. 
𝜇𝑡0

∗ :  Flood hazard rate immediately after 

𝑡0 results of the Box-Cox 
transformation 

P-P Hazard rate plots from Table 4 and 
Table 5 are presented in Figure 6 and 
Figure 7.  
 

 

Figure 6. P-P Plot Box-Cox 
Transformation Results Hazard Rate 

Values for the Assumed Linear 
Distribution of Waiting Times 

 



Desimal, 6 (3), 2023 - 318 

Ahmad Fajri S, Nurul Fuady Adhalia H, Putri Ayu Maharani, Syahrul Ramadhan Tahir 
 

Copyright © 2023, Desimal, Print ISSN: 2613-9073, Online ISSN: 2613-9081 

 
 

Figure 7. P-P Plot Box-Cox 
Transformation Results Hazard Rate 

Values for the Assumed Exponential 
Distribution of Waiting Times 

Hazard rates in Table 4 and Table 5 
are distributed normally based on Figure 
6 and Figure 7 because the P-P Plot hazard 
rate follows a diagonal line. The hazard 
rates in Table 4 and Table 5 are 
transformed into a parametric model. The 
parametric model used is a regression 
model with linear assumptions 𝜇̂𝑡0

∗ = 𝛼0 +

𝛼1𝑡0 + 𝜀, quadratic assumptions 𝜇̂𝑡0

∗ =

𝛼0 + 𝛼1𝑡0 + 𝛼2𝑡0
2 + 𝜀 and cubic 

assumptions 𝜇̂𝑡0

∗ = 𝛼0 + 𝛼1𝑡0 + 𝛼2𝑡0
2 +

𝛼2𝑡0
2 + 𝜀. The resulting model for 𝜇̂𝑡0

∗  is 

shown in Table 6 and Table 7 below. 

Table 6. Estimated Hazard Rate Equation for the Assumed Linear Distribution of 
Waiting Times 

Regression 
Model 

Regression Equations R Square 

Mean 
Square 
Error 
(MSE) 

Real 
Regression 

Test 
(𝜶 = 𝟎, 𝟎𝟓) 

Linear 𝜇̂𝑡0
∗ = 3.641 − 0.276𝑡0 0.266 1.201 Not Real 

Quadratic 𝜇̂𝑡0
∗ = 0.652 + 2.162𝑡0 − 0.353𝑡0

2 0.993 0.017 Real 

Cubic 𝜇̂𝑡0
∗ = 0.366 + 2.522𝑡0 − 0.469𝑡0

2 + 0.011𝑡0
3 0.994 0.027 Not Real 

Table 7. Estimated Hazard Rate Equation for the Assumed Exponential Distribution of 
Waiting Times 

Regression 
Model 

Regression Equations R Square 

Mean 
Square 
Error 
(MSE) 

Real 
Regression 

Test 
(𝜶 = 𝟎, 𝟎𝟓) 

Linear 𝜇̂𝑡0
∗ = 3.745 − 0.255𝑡0 0.268 1.101 Not Real 

Quadratic 𝜇̂𝑡0
∗ = 0.995 + 1.989𝑡0 − 0.325𝑡0

2 0.994 0.012 Real 

Cubic 𝜇̂𝑡0
∗ = 0.587 + 2.501𝑡0 − 0.489𝑡0

2 + 0.015𝑡0
3 0.997 0.011 Not Real 

The comparison curve for the 
estimated hazard rate from Table 5 and 
Table 6 is shown in Figure 8 and Figure 9. 
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Figure 8. Comparison Curve of the 
Estimated Hazard Rate for the Assumed 

Linear Distribution of Waiting Time 

 

Figure 9. Comparison Curve of the 
Estimated Hazard Rate for the Assumed 

Exponential Distribution of Waiting 
Times 

Based on Table 6 and Table 7, the 
estimated regression equations with 
linear, quadratic, and cubic models were 
obtained. At the significance level of 𝛼 =
0.05, the quadratic regression model 𝜇̂𝑡0

∗ =

0.652 + 2.162𝑡0 − 0.353𝑡0
2 for the 

assumed linear distribution of waiting 
times and 𝜇̂𝑡0

∗ = 0.995 + 1.989𝑡0 −

0.325𝑡0
2 for the assumed exponential 

distribution of waiting times were 
significantly different, while the linear and 
cubic regression models were not 
significantly different. Based on Figure 8 
and Figure 9, the quadratic and cubic 
regression curves follow the data pattern. 
The best model chosen is a quadratic 
model for the assumed exponential 
distribution of waiting times based on R 
Square, Mean Square Error, and real 

regression tests. If this quadratic model is 
assumed to be able to estimate the hazard 
rate value in real life in the future, then 
this model can be used. By using reverse 
transformation, the hazard rate equation 
in Table 3 was obtained for an assumed 
exponential distribution of waiting times, 

which is 𝜇̂𝑡0
=

1

𝜇̂𝑡0
∗ 2. For example, the value 

of the flood hazard rate in 2026 is  

𝜇̂10 =
1

𝜇̂10
∗ 2 

=
1

(0.995+1.989(10)−0.325(10)2)2 = 0.00741. 

This means that the estimated level of 
flooding in 2026 is 0.00741. This means 
that the level of flooding in 2026 will be 
0.00741. 

The hazard rate is related to the 
estimated chance of an event occurring in 
a certain area. The probability of an event 
occurring is 𝜇𝑡0

∆𝑡0
 in the interval (𝑡0, 𝑡0 +

∆𝑡0
], while the probability of no event 

occurring in the interval (𝑡0, 𝑡0 + 𝑛] is 

 𝑛𝑝𝑡0
= 𝑒− ∫ 𝜇(𝑡0+𝑠) 𝑑𝑠

𝑛

0 . 

In other words, 

 𝑡0
𝑝0 = 𝑒− ∫ 𝜇(𝑠) 𝑑𝑠

𝑡0
0  

is the probability of no flood event in the 
interval (0, 𝑡0]. Therefore, the probability 
of at least one flood event in the interval 
(𝑡0, 𝑡0 + ∆𝑡0

] is 

 𝑡0
𝑞0 = 1 −𝑡0

𝑝0 = 1 − 𝑒− ∫ 𝜇(𝑠) 𝑑𝑠
𝑡0

0  

assuming that there are no flooding events 
in the interval (0, 𝑡0].  

The estimation of flood events in the 
interval (0, 𝑡0] was calculated by using the 
flood hazard rate value in the interval 
(0, 𝑡0], determining the probability that 
there will be no flood events in the interval 
(0, 𝑡0] and determining the probability 
that there will be at least one flood event 
in the interval (𝑡0, 𝑡0 + ∆𝑡0

]. Estimated 

flood events were assessed through the 
hazard rate using a quadratic regression 
model for exponentially distributed 
waiting times, namely  

𝜇̂𝑡0
=

1

𝜇̂𝑡0
∗ 2  
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       =
1

(0.995+1.989𝑡0−0.325𝑡0
2)

2  

based on R Square, MSE, and real 
regression tests. The probability of a flood 
occurring in the interval (𝑡0, 𝑡0 + ∆𝑡0

] 

using the data obtained is shown in Table 
8 and Figure 10. 

Table 8. Estimated Probability of 
Flooding for the Assumed Exponential 

Distribution of Waiting Times in the 
interval (𝑡0, 𝑡0 + ∆𝑡0

]  

No. Interval 𝒕𝟎 𝝁̂𝒕𝟎
  𝒕𝟎

𝒑𝟎  𝒕𝟎
𝒒𝟎 

1. (0,1] 1 0.141 0.868 0.132 
2. (1,2] 2 0.074 0.862 0.138 
3. (2,3] 3 0.061 0.831 0.169 
4. (3,4] 4 0.071 0.752 0.248 
5. 
6. 

(4,5] 
(5,6] 

5 
6 

0.126 
0.662 

0.532 
0.018 

0.468 
0.982 

Information: 
𝜇̂𝑡0

    :  Estimator of flood hazard rate at 𝑡0. 

 𝑡0
𝑝0 : Probability that no flooding will   

occur in the interval (0, 𝑡0]. 
 𝑡0

𝑞0 :  Probability of at least one flood in 

the interval (0, 𝑡0]. 

 

Figure 10. Graph of the Relationship 
between the Probability of a Flood 

Occurring and the Time Difference 𝑡0 
Since the Last Flood 

Based on Table 8, if it is known that a 
flood has not occurred at 𝑡0 = 2, then the 
probability of at least one flood event in 
the interval (2,3] is 0.169. Figure 10 shows 
the probability of a flood occurring after 
an exponential waiting time. The 
horizontal axis shows the time interval 𝑡0 
since the flood last occurred, and the 

probability of at least one flood event 
occurring within a six-year period is 0.982. 

CONCLUSIONS AND SUGGESTIONS 

One method for determining the 
estimated hazard rate value is the single-
decrement method with a likelihood 
approach. The hazard rate estimator for 
the assumed linear distribution of waiting 

times is 𝜇̂𝑡0
=

𝑞̂𝑡0

1−𝑞̂𝑡0

 with 𝑞̂𝑡0
=

𝑑𝑡0

𝑛𝑡0

, while 

the hazard rate estimator for the assumed 
exponential distribution of waiting times 

is 𝜇̂𝑡0
=

𝑑𝑡0

[(𝑛𝑡0−𝑑𝑡0
)+ ∑ 𝑦𝑖

𝑑𝑡0
𝑖=0

]
. Hazard rate 

calculations used flood data in Parepare in 
2017–2023. Based on the results of the 
data analysis, the best parametric model 
for the two waiting time distribution 
assumptions is the quadratic regression 
model, and the percentage of this model 
that can be used is at least 90% based on R 
Square, Mean Square Error and the real 
regression test. After obtaining the 
estimated hazard rate value, the estimated 
probability of at least one flood event 
occurring in the interval (𝑡0, 𝑡0 + ∆𝑡0

] is 

determined. 
Suggestions for further research are 

to estimate the hazard rate using other 
methods, waiting time assumptions, or 
parametric models. 
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